OFFSET
1,1
COMMENTS
a(6) onwards the pattern is evident.
LINKS
Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,0,0,10,-10).
FORMULA
a(n) = ((n+4)%9+1)*10^floor((n+4)/9)-5 for all n > 4, where % is the binary mod/remainder operator. - M. F. Hasler, Sep 16 2016
From Chai Wah Wu, Sep 15 2020: (Start)
a(n) = a(n-1) + 10*a(n-9) - 10*a(n-10) for n > 14.
G.f.: 5*x*(72*x^13 - 18*x^12 - 18*x^11 - 18*x^10 - 18*x^9 + 2*x^8 + 2*x^7 + 2*x^6 + 2*x^5 - 7*x^4 + 2*x^3 + 2*x^2 + 2*x + 2)/((x - 1)*(10*x^9 - 1)). (End)
a(n) = 5 * A077492(n). - Alois P. Heinz, Sep 15 2020
MATHEMATICA
t={}; Do[i=5; While[Total[IntegerDigits[i]]!=n, i=i+5]; AppendTo[t, i], {n, 46}]; t (* Jayanta Basu, May 19 2013 *)
With[{f=5*Range[200000]}, Flatten[Table[Select[f, Total[IntegerDigits[#]] == n&, 1], {n, 50}]]] (* Harvey P. Dale, Dec 31 2013 *)
PROG
(PARI) A069534(n)=(((n+4)%9+1)*10^((n+4)\9)-5)*10^(n<5) \\ M. F. Hasler, Sep 16 2016
CROSSREFS
KEYWORD
base,nonn,easy
AUTHOR
Amarnath Murthy, Apr 01 2002
EXTENSIONS
More terms from Ray Chandler, Jul 28 2003
STATUS
approved