login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A069017 Triangular numbers of the form k^2 + k + 1. 6
1, 3, 21, 91, 703, 3081, 23871, 104653, 810901, 3555111, 27546753, 120769111, 935778691, 4102594653, 31788928731, 139367449081, 1079887798153, 4734390674091, 36684396208461, 160829915470003, 1246189583289511, 5463482735306001, 42333761435634903 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..1001

FORMULA

G.f.: (x^4 +2*x^3 -16*x^2 +2*x +1)/((1-x)*(1-6*x+x^2)*(1+6*x+x^2)).

From Zak Seidov, Sep 25 2010: (Start)

a(n) = 34*a(n-2) - a(n-4) - 11.

a(n) = 2*A124174(n) + 1. (End)

a(n) = (A077443(n)^2 - 1)/2. - Amiram Eldar, Dec 01 2018

MAPLE

Do[a = n(n + 1) + 1; b = Floor[Sqrt[2a]]; If[b(b + 1) == 2a, Print[a]], {n, 1, 106}]

MATHEMATICA

Select[Table[n^2+n+1, {n, 0, 206*10^6}], OddQ[Sqrt[8#+1]]&] (* The program takes a long time to run. *) (* Harvey P. Dale, Sep 22 2017 *)

CoefficientList[Series[(x^4 +2*x^3 -16*x^2 +2*x +1)/((1-x)*(1-6*x+x^2)*(1+6*x+x^2)), {x, 0, 50}], x] (* G. C. Greubel, Dec 01 2018 *)

PROG

(PARI) Vec((x^4+2*x^3-16*x^2+2*x+1)/((1-x)*(1-6*x+x^2)*(1+6*x+x^2)) +O(x^66)) /* Joerg Arndt, Mar 25 2013 */

(MAGMA) m:=50; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!( (x^4 +2*x^3 -16*x^2 +2*x +1)/((1-x)*(1-6*x+x^2)*(1+6*x+x^2)) )); // G. C. Greubel, Dec 01 2018

(Sage) s=((x^4 +2*x^3 -16*x^2 +2*x +1)/((1-x)*(1-6*x+x^2)*(1+6*x+x^2))).series(x, 50); s.coefficients(x, sparse=False) # G. C. Greubel, Dec 01 2018

CROSSREFS

Cf. A124174.

Sequence in context: A129755 A059826 A108970 * A264246 A144883 A074597

Adjacent sequences:  A069014 A069015 A069016 * A069018 A069019 A069020

KEYWORD

nonn

AUTHOR

Amarnath Murthy, Apr 02 2002

EXTENSIONS

Program and terms from Robert G. Wilson v

a(18)-a(22) from Alex Ratushnyak, Mar 23 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 15 23:54 EDT 2019. Contains 328038 sequences. (Running on oeis4.)