login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A124174 Sophie Germain triangular numbers tr: 2*tr+1 is also a triangular number. 14
0, 1, 10, 45, 351, 1540, 11935, 52326, 405450, 1777555, 13773376, 60384555, 467889345, 2051297326, 15894464365, 69683724540, 539943899076, 2367195337045, 18342198104230, 80414957735001, 623094791644755, 2731741367653000, 21166880717817451, 92798791542467010 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

Sophie Germain triangular numbers are one of an infinite number of triangular number sets tr where 2*tn^2*tr + tn is a triangular number: tr and tn both also being triangular numbers with tn being held constant. For the present numbers, a(n) = tr, 8*(2*tr + 1) + 1 = 16*tr + 9 is also a square, the square root of which is 2*y+1 with y being the argument of the triangular number 2*tr + 1. Now 1/2*(y^2+y) = a^2 + a +1 from the definition of Sophie Germain triangular numbers. Multiply both sides by 4 and subtract 3 to get 2*y^2 + 2*y -3 = 4*a^2 + 4*a +1 (a square). Cf. A124124: Numbers y such that 2*y^2 + 2*y - 3 is a square. The values y are the same y such that 2*y+1 = sqrt(16*tr + 9). - Kenneth J Ramsey, Jun 25 2011

Values of n such that 2*n+1 and 9*n+1 are both triangular numbers. - Colin Barker, Jun 29 2016

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..100

Index entries for linear recurrences with constant coefficients, signature (1,34,-34,-1,1).

FORMULA

a(n) = (A124124(n)^2 + A124124(n)-2)/4.

a(n) = 35*(a(n-2) - a(n-4)) + a(n-6).

From Peter Pein, Dec 04 2006: (Start)

a(n) = -11/32 + (-3 - 2*sqrt(2))^n/64 + (5*(3 - 2*sqrt(2))^n)/32 + (-3 - 2*sqrt(2))^n/(32*sqrt(2)) - (5*(3 - 2*sqrt(2))^n)/(32*sqrt(2)) + (-3 + 2*sqrt(2))^n/64 - (-3 + 2*sqrt(2))^n/(32*sqrt(2)) + (5*(3 + 2*sqrt(2))^n)/32 + (5*(3 + 2*sqrt(2))^n)/(32*sqrt(2));

O.g.f.: (x*(1 + 9*x + x^2))/((1 - x)*(1 - 6*x + x^2)*(1 + 6*x + x^2));

E.g.f.: (-22*exp(x) + exp(-3*x+2*x*sqrt(2))*(1-sqrt(2)) - 5*exp(3*x-2*x*sqrt(2))*(-2 + sqrt(2)) + exp(-3*x-2*x*sqrt(2))*(1+sqrt(2)) + 5*exp(3*x+2*x*sqrt(2))*(2+sqrt(2)))/64.  (End)

a(n) = 34*a(n-2) - a(n-4) + 11. - Kieren MacMillan, Nov 08 2008

a(n) = a(n-1) + 34*a(n-2) - 34*a(n-3) - a(n-4) + a(n-5) with a(0)=0, a(1)=1, a(2)=10, a(3)=45, a(4)=351. - Harvey P. Dale, Sep 28 2011

a(n) = x*(x + 1)/2 where x = A216134(n) = (2*A000129(n) + (-1)^n*(A000129(2*floor(n/2) - 1) - (-1)^n)/2). - Raphie Frank, Jan 04 2013

a(n+2) = 1/2*((3/2*sqrt(8*a(n) + 1) + sqrt(16*a(n) + 9) - 1/2)*(3/2*sqrt(8*a(n) + 1) + sqrt(16*a(n) + 9) + 1/2)); a(0) = 0, a(1) = 1. - Raphie Frank, Jan 29 2013

MAPLE

a:= n-> (Matrix([[10, 1, 0, 0, 1]]). Matrix(5, (i, j)-> if i=j-1 then 1 elif j=1 then [1, 34, -34, -1, 1][i] else 0 fi)^n)[1, 4]: seq(a(n), n=1..30); # Alois P. Heinz, Apr 27 2009

MATHEMATICA

LinearRecurrence[{1, 34, -34, -1, 1}, {0, 1, 10, 45, 351}, 30] (* Harvey P. Dale, Sep 28 2011 *)

PROG

(MAGMA) I:=[0, 1, 10, 45]; [n le 4 select I[n] else 34*Self(n-2)-Self(n-4)+11: n in [1..30]]; // Vincenzo Librandi, Sep 29 2011

(PARI) a=[0, 1, 10, 45, 351]; for(n=5, 20, a=concat(a, a[#a]+34*a[#a-1]- 34*a[#a-2]-a[#a-3]+a[#a-4])); a \\ Charles R Greathouse IV, Sep 29 2011

CROSSREFS

Cf. A005384, A077442, A124124.

Cf. A216134, A000129.

Sequence in context: A219709 A061772 A032165 * A264414 A188699 A044112

Adjacent sequences:  A124171 A124172 A124173 * A124175 A124176 A124177

KEYWORD

nice,nonn,easy

AUTHOR

Zak Seidov, Dec 04 2006

EXTENSIONS

More terms from Alois P. Heinz, Apr 27 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 23 09:29 EST 2017. Contains 295115 sequences.