login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A068374 Primes n such that positive values of n - A002110(k) are all primes (k>0). 2
2, 5, 13, 19, 43, 73, 103, 109, 229, 313, 883, 1093, 1489, 1699, 1789, 2143, 3463, 3853, 5653, 15649, 21523, 43789, 47743, 50053, 51199, 59473, 86293, 88819, 93493, 101533, 176053, 197299, 205663, 235009, 257503, 296509, 325543, 338413, 347989 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

Robert Israel, Table of n, a(n) for n = 1..121

MAPLE

primo:= proc(k) option remember; ithprime(k)*procname(k-1) end proc:

primo(1):= 2:

filter:= proc(p)

  local k;

  if not isprime(p) then return false fi;

  for k from 1 do

    if primo(k) >= p then return true

    elif not isprime(p - primo(k)) then return false

    fi

  od

end proc:

select(filter, [2, seq(i, i=3..10^6, 2)]); # Robert Israel, Dec 14 2015

MATHEMATICA

s = Table[Product[Prime@ k, {k, n}], {n, 12}]; Select[Prime@ Range@ 30000, AllTrue[# - TakeWhile[s, Function[k, k < #]], PrimeQ@ # && # > 0 &] &] (* Michael De Vlieger, Dec 14 2015, Version 10 *)

PROG

(PARI) primo(n) = prod(k=1, n, prime(k));

isok(p) = {my(k=1); while ((pp=primo(k)) < p, if (! isprime(p-pp), return (0)); k++; ); return (1); }

lista(nn) = forprime(p=2, nn, if (isok(p), print1(p, ", ")); ); \\ Michel Marcus, Dec 14 2015

(MATLAB)

Primes = primes(10^8);

A = Primes;

primorial = 1;

for k =1:10

  primorial = primorial*Primes(k);

j = find(A > primorial, 1, 'first');

  if numel(j) == 0

    break

  end

  A = [A(1:j-1), intersect(A(j:end), Primes + primorial)];

end

A % Robert Israel, Dec 14 2015

CROSSREFS

Cf. A002110.

Sequence in context: A094158 A307244 A191082 * A068371 A072899 A099982

Adjacent sequences:  A068371 A068372 A068373 * A068375 A068376 A068377

KEYWORD

easy,nonn

AUTHOR

Naohiro Nomoto, Mar 01 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 18 07:39 EDT 2019. Contains 326075 sequences. (Running on oeis4.)