login
A327909
a(n) is the smallest start of a run of n or more integers having a prime factor greater than n.
2
2, 5, 13, 19, 55, 65, 113, 151, 151, 226, 364, 406, 736, 736, 1057, 1057, 1409, 1409, 2059, 2059, 2313, 2313, 2313, 2313, 2313, 2313, 2313, 6007, 6961, 6961, 10305, 12013, 12013, 12013, 12013, 12013, 12026, 12026, 17501, 17501, 17501, 17501, 20833, 20833
OFFSET
1,1
COMMENTS
Is a(n) an upper bound on A327265(n)? A327265(n) = a(n) at n = 1, 2, 4, and 9.
LINKS
EXAMPLE
| prime |
k | factorization | gpf(k) | tau(k)
----+---------------+--------+-------
151 | 151 | 151 | 2
152 | 2^3 * 19 | 19 | 8
153 | 3^2 * 17 | 17 | 6
154 | 2 * 7 * 11 | 11 | 8
155 | 5 * 31 | 31 | 4
156 | 2^2 * 3 * 13 | 13 | 12
157 | 157 | 157 | 2
158 | 2 * 79 | 79 | 4
159 | 3 * 53 | 53 | 4
MAPLE
A:= Vector(100): A[1]:= 2: count:= 1:
B:= Vector(100):
for i from 2 while count < 100 do
p:= max(numtheory:-factorset(i));
for j from 1 to min(p-1, 100) do
if B[j] = 0 then B[j]:= i fi
od;
for j from p to 100 do
if B[j] > 0 and B[j] <= i-j and A[j] = 0 then A[j]:= B[j]; count:= count+1; fi
od;
if p <= 99 then B[p..100]:= 0 fi;
od:
convert(A, list); # Robert Israel, Jan 23 2023
PROG
(PARI) a(n) = {my(k=1); x=0; while(x<n, if(vecmax(factor(k++)[, 1])>n, x++, x=0)); k-n+1; } \\ Jinyuan Wang, Oct 26 2019
CROSSREFS
Cf. A006530 (greatest prime factor of n).
Sequence in context: A191082 A068374 A068371 * A072899 A099982 A298991
KEYWORD
nonn
AUTHOR
Jon E. Schoenfield, Oct 06 2019
STATUS
approved