

A068132


Triangular numbers with sum of digits = 28.


1



5995, 14878, 17578, 24976, 29890, 32896, 36856, 37675, 42778, 47278, 52975, 53956, 54946, 55945, 56953, 57970, 67528, 68635, 69751, 70876, 75466, 76636, 77815, 83845, 85078, 87571, 88831, 91378, 92665, 93961, 95266, 96580, 97903
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

1. The sequence is unbounded, as the (10^k + 9)th triangular number for k >1 is a term. 2. The sum of the digits of triangular numbers in most cases is a triangular number. 3. Conjecture: For every triangular number T there exist infinitely many triangular numbers with sum of digits = T.


LINKS

Table of n, a(n) for n=0..32.


MATHEMATICA

Select[Accumulate[Range[500]], Total[IntegerDigits[#]]==28&] (* Harvey P. Dale, Aug 30 2015 *)


CROSSREFS

Cf. A068127, A068128, A068129, A068130, A068131.
Sequence in context: A055108 A046903 A171351 * A250514 A115429 A046395
Adjacent sequences: A068129 A068130 A068131 * A068133 A068134 A068135


KEYWORD

base,easy,nonn


AUTHOR

Amarnath Murthy, Feb 21 2002


EXTENSIONS

More terms from Sascha Kurz, Mar 06 2002


STATUS

approved



