OFFSET
0,2
COMMENTS
a(n)/10^n tends towards log_10((1+sqrt(5))/2) = 0.2089876402499787337692... - Vladeta Jovovic, Mar 09 2002
LINKS
Eric Weisstein's World of Mathematics, Fibonacci Number.
Eric Weisstein's World of Mathematics, Lucas Number.
FORMULA
Can be calculated easily using the fact that Fibonacci(n) is very close to GoldenRatio^n/(2*GoldenRatio-1) (cf. A000045). - Michael Taktikos, Aug 11 2004
MATHEMATICA
Table[ Floor[ Log[10, Fibonacci[10^n]] + 1], {n, 0, 7} ]
fib10[n_] := Block[{a = N[Log[10, Sqrt[5]/5], 64], b = N[Log[10, (1 + Sqrt[5])/2], 64]}, Floor[a + 10^n*b] + 1]; Table[ fib10[n], {n, 19}] (* Robert G. Wilson v, May 20 2005 *)
FibonacciDigits[n_] := Ceiling[(2*n*ArcCsch[2] - Log[5])/Log[100]]; Table[ FibonacciDigits[10^n], {n, 19}]
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Robert G. Wilson v, Feb 26 2002
EXTENSIONS
Corrected by Vladeta Jovovic, Sep 01 2004
STATUS
approved