login
A067379
Primes expressible as the sum of (at least two) consecutive primes in at least 3 ways.
4
311, 863, 1151, 1367, 1951, 2393, 2647, 2689, 3389, 4957, 5059, 5153, 7451, 7901, 8819, 10499, 10859, 10949, 12329, 12641, 12713, 13127, 13297, 14369, 14699, 14759, 14951, 15091, 15329, 15527, 16223, 16249, 16829, 18089, 18311, 18401
OFFSET
1,1
LINKS
Patrick De Geest, WON plate 122
Carlos Rivera, Puzzle 46. Primes expressible as sum of consecutive primes in K ways, The Prime Puzzles and Problems Connection.
FORMULA
Prime(n) such that A307610(n) > 3. - Ray Chandler, Sep 21 2023
MATHEMATICA
m=2*6!; lst={}; Do[p=Prime[a]; Do[p+=Prime[b]; If[PrimeQ[p]&&p<Prime[m]*3+8, AppendTo[lst, p]], {b, a+1, m, 1}], {a, m}]; lst1=Sort[lst]; lst={}; Do[If[lst1[[n]]==lst1[[n+1]]&&lst1[[n]]==lst1[[n+2]], AppendTo[lst, lst1[[n]]]], {n, Length[lst1]-2}]; Union[lst] (* Vladimir Joseph Stephan Orlovsky, Aug 15 2009 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Patrick De Geest, Feb 04 2002
STATUS
approved