login
If n = Product_{i} p_i^e_i, a(n) = Sum_{i} (p_i - 1)*p_i^(e_i - 1).
6

%I #31 Feb 15 2024 14:19:41

%S 0,1,2,2,4,3,6,4,6,5,10,4,12,7,6,8,16,7,18,6,8,11,22,6,20,13,18,8,28,

%T 7,30,16,12,17,10,8,36,19,14,8,40,9,42,12,10,23,46,10,42,21,18,14,52,

%U 19,14,10,20,29,58,8,60,31,12,32,16,13,66,18,24,11,70,10,72,37,22,20,16,15,78,12,54,41,82,10,20,43,30,14,88,11,18,24,32,47,22,18,96,43,16,22

%N If n = Product_{i} p_i^e_i, a(n) = Sum_{i} (p_i - 1)*p_i^(e_i - 1).

%C Additive sequence with a(p^e) = phi(p^e) = (p-1)*p^(e-1). - _Charles R Greathouse IV_, Sep 10 2015

%H Reinhard Zumkeller, <a href="/A067240/b067240.txt">Table of n, a(n) for n = 1..10000</a>

%H J. Kuzmanovich and A. Pavlichenkov, <a href="http://www.jstor.org/stable/2695329">Finite groups of matrices whose entries are integers</a>, Amer. Math. Monthly, 109 (2002), 173-186. (T on p. 181.)

%F For n > 1: a(n) = Sum_{i} phi(p_i^e_i). - _T. D. Noe_, Jul 10 2003

%p with(numtheory); A067240 := proc(n) local e,j; e := ifactors(n)[2]: add((e[j][1]-1)*e[j][1]^(e[j][2]-1),j=1..nops(e)); end;

%t a[n_] := Total[ EulerPhi[ Power @@ #] & /@ FactorInteger[n]]; a[1] = 0; Table[a[n], {n, 1, 100}] (* _Jean-François Alcover_, Jun 22 2012, after _T. D. Noe_ *)

%o (PARI)

%o A067240(n)=

%o {

%o local(f=factor(n), r=0, p, e);

%o for (i=1, matsize(f)[1],

%o p=f[i,1]; e=f[i,2];

%o r += (p-1)*p^(e-1);

%o );

%o return(r);

%o } /* _Joerg Arndt_, Jun 10 2011 */

%o (PARI) a(n)=my(f=factor(n)); sum(i=1,#f~, (f[i,1]-1)*f[i,1]^(f[i,2]-1)) \\ _Charles R Greathouse IV_, Sep 10 2015

%o (Haskell)

%o a067240 1 = 0

%o a067240 n = sum $ map a000010 $ a141809_row $ toInteger n

%o -- _Reinhard Zumkeller_, Jun 13 2012

%o (Python)

%o from sympy import factorint

%o a = lambda n: sum((p**(e-1))*(p-1) for p,e in factorint(n).items() if e > 0) # _Darío Clavijo_, Feb 15 2024

%Y Cf. A000010, A141809.

%K nonn

%O 1,3

%A _N. J. A. Sloane_, Mar 10 2002