This site is supported by donations to The OEIS Foundation.

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A067240 If n = Prod p_i^e_i, a(n) = Sum (p_i-1)*p_i^(e_i-1). 4
 0, 1, 2, 2, 4, 3, 6, 4, 6, 5, 10, 4, 12, 7, 6, 8, 16, 7, 18, 6, 8, 11, 22, 6, 20, 13, 18, 8, 28, 7, 30, 16, 12, 17, 10, 8, 36, 19, 14, 8, 40, 9, 42, 12, 10, 23, 46, 10, 42, 21, 18, 14, 52, 19, 14, 10, 20, 29, 58, 8, 60, 31, 12, 32, 16, 13, 66, 18, 24, 11, 70, 10, 72, 37, 22, 20, 16, 15, 78, 12, 54, 41, 82, 10, 20, 43, 30, 14, 88, 11, 18, 24, 32, 47, 22, 18, 96, 43, 16, 22 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Additive sequence with a(p^e) = phi(p^e) = (p-1)*p^(e-1). - Charles R Greathouse IV, Sep 10 2015 REFERENCES J. Kuzmanovich and A. Pavlichenkov, Finite groups of matrices whose entries are integers, Amer. Math. Monthly, 109 (2002), 173-186. (T on p. 181.) LINKS Reinhard Zumkeller, Table of n, a(n) for n = 1..10000 FORMULA For n > 1: a(n) = Sum phi(p_i^e_i). - T. D. Noe, Jul 10 2003 MAPLE with(numtheory); A067240 := proc(n) local e, j; e := ifactors(n)[2]: add((e[j][1]-1)*e[j][1]^(e[j][2]-1), j=1..nops(e)); end; MATHEMATICA a[n_] := Total[ EulerPhi[ Power @@ #] & /@ FactorInteger[n]]; a[1] = 0; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Jun 22 2012, after T. D. Noe *) PROG (PARI) A067240(n)= {     local(f=factor(n), r=0, p, e);     for (i=1, matsize(f)[1],         p=f[i, 1];  e=f[i, 2];         r += (p-1)*p^(e-1);     );     return(r); } /* Joerg Arndt, Jun 10 2011 */ (PARI) a(n)=my(f=factor(n)); sum(i=1, #f~, (f[i, 1]-1)*f[i, 1]^(f[i, 2]-1)) \\ Charles R Greathouse IV, Sep 10 2015 (Haskell) a067240 1 = 0 a067240 n = sum \$ map a000010 \$ a141809_row \$ toInteger n -- Reinhard Zumkeller, Jun 13 2012 CROSSREFS Cf. A000010, A141809. Sequence in context: A113886 A220096 A122376 * A126080 A060681 A202479 Adjacent sequences:  A067237 A067238 A067239 * A067241 A067242 A067243 KEYWORD nonn AUTHOR N. J. A. Sloane, Mar 10 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.