login
A066804
Sum of diagonal elements and those below it for a square matrix of integers, starting with 1.
1
1, 8, 34, 100, 235, 476, 868, 1464, 2325, 3520, 5126, 7228, 9919, 13300, 17480, 22576, 28713, 36024, 44650, 54740, 66451, 79948, 95404, 113000, 132925, 155376, 180558, 208684, 239975, 274660, 312976, 355168, 401489, 452200, 507570, 567876
OFFSET
1,2
REFERENCES
T. A. Gulliver, Sequences from Arrays of Integers, Int. Math. Journal, Vol. 1, No. 4, pp. 323-332, 2002.
FORMULA
a(n) = n*(n+1)*(2*n^2-n+2)/6.
G.f.: x*(1+3*x+4*x^2)/(1-x)^5. [Bruno Berselli, Jun 22 2013]
a(n) = n*A000217(n) - sum((n-4*i)*A000217(i), i=0..n-1). [Bruno Berselli, Jun 22 2013]
a(n) = 5*a(n-1) -10*a(n-2) +10*a(n-3) -5*a(n-4)+a(n-5), with n>4, a(0)=1, a(1)=8, a(2)=34, a(3)=100, a(4)=235. [Yosu Yurramendi, Sep 03 2013]
EXAMPLE
a(7) = 7*28 - (7*0+3*1-1*3-5*6-9*10-13*15-17*21) = 868. [Bruno Berselli, Jun 22 2013]
MATHEMATICA
Table[n(n+1)(2n^2-n+2)/6, {n, 50}] (* or *) LinearRecurrence[{5, -10, 10, -5, 1}, {1, 8, 34, 100, 235}, 50] (* Harvey P. Dale, Dec 02 2016 *)
PROG
(Magma) [n*(n+1)*(2*n^2-n+2)/6: n in [1..30]]; // Vincenzo Librandi, May 22 2011
(R)
a <- c(1, 8, 34, 100, 235)
for(n in (length(a)+1):30) a[n] <- 5*a[n-1] -10*a[n-2] +10*a[n-3] -5*a[n-4]+a[n-5]
a
[Yosu Yurramendi, Sep 03 2013]
CROSSREFS
Sequence in context: A301887 A208639 A240785 * A033455 A172202 A053298
KEYWORD
nonn,easy
AUTHOR
Aaron Gulliver (agullive(AT)ece.uvic.ca), Jan 19 2002
EXTENSIONS
More terms from Sascha Kurz, Mar 23 2002
STATUS
approved