login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A066401
Square root of b_1*b_2*...*b_t corresponding to smallest values of t in R. L. Graham's sequence (A006255).
5
1, 6, 12, 2, 20, 24, 28, 120, 3, 180, 66, 60, 78, 1260, 360, 4, 102, 108, 152, 120, 126, 132, 184, 144, 5, 936, 5040, 1120, 232, 210, 248, 240, 9240, 2040, 1680, 6, 370, 342, 312, 300, 410, 336, 430, 330, 360, 414, 470, 360, 7, 420, 25704, 196560, 636, 3780
OFFSET
1,2
COMMENTS
a(n) = A000196(A245530(n)). - Reinhard Zumkeller, Jul 25 2014
REFERENCES
R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 147.
LINKS
Peter Kagey, Table of n, a(n) for n = 1..1000 (First 125 terms from Reinhard Zumkeller)
R. L. Graham, Bijection between integers and composites, Problem 1242, Math. Mag., 60 (1987), p. 180.
EXAMPLE
a(2) = 6 because the best such sequence is 2,3,6 for which the product is 36 = 6^2.
MATHEMATICA
Table[k = 0; While[Length@ # == 0 &@ Set[f, Select[Rest@ Subsets@ Range@ k, IntegerQ@ Sqrt[n (Times @@ # &[n + #])] &]], k++]; If[IntegerQ@ Sqrt@ n, k = {n}, k = n + Prepend[First@ f, 0]]; Sqrt[Times @@ k], {n, 22}] (* Michael De Vlieger, Oct 26 2016 *)
PROG
(Haskell)
a066401 = a000196 . a245530 -- Reinhard Zumkeller, Jul 25 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Dec 25 2001
EXTENSIONS
More terms from Larry Reeves (larryr(AT)acm.org), Jan 06 2005
More terms from Joshua Zucker, May 18 2006
STATUS
approved