login
A066223
Bisection of A000085.
5
1, 2, 10, 76, 764, 9496, 140152, 2390480, 46206736, 997313824, 23758664096, 618884638912, 17492190577600, 532985208200576, 17411277367391104, 606917269909048576, 22481059424730751232, 881687990282453393920, 36494410645223834692096, 1589659519990672490875904
OFFSET
0,2
COMMENTS
Number of tableaux on 2n elements. - Roberto E. Martinez II, Jan 09 2002
a(n) = number of ways to connect 2n points labeled 1,2,...,2n in a line with 0 or more arcs such that at most one arc leaves each point. For example, with arcs separated by dashes, a(2)=10 counts {} (no arcs), 12, 13, 14, 23, 24, 34, 12-34, 13-24, 14-23. - David Callan, Sep 18 2007
a(n) = A229223(2n,2) = A229243(2,n). - Alois P. Heinz, Sep 17 2013
REFERENCES
S. Chowla, The asymptotic behavior of solutions of difference equations, in Proceedings of the International Congress of Mathematicians (Cambridge, MA, 1950), Vol. I, 377, Amer. Math. Soc., Providence, RI, 1952.
LINKS
I. Dolinka, J. East and R. D. Gray, Motzkin monoids and partial Brauer monoids, arXiv preprint arXiv:1512.02279 [math.GR], 2015.
Michael Torpey, Semigroup congruences: computational techniques and theoretical applications, Ph.D. Thesis, University of St. Andrews (Scotland, 2019).
FORMULA
a(n) = sum(k=0, n, C(2n, 2*k)*(2k-1)!!). - Benoit Cloitre, May 01 2003
a(n) = n!*2^n*LaguerreL(n, -1/2, -1/2). - Vladeta Jovovic, May 10 2003
E.g.f.: cosh(x)*exp(x^2/2) (with interpolated zeros) - Paul Barry, May 26 2003
E.g.f.: exp(x/(1-2*x))/sqrt(1-2*x). - Paul Barry, Apr 12 2010
a(n) = (1/sqrt(2*pi))*Int((1+x)^(2*n)*exp(-x^2/2),x,-infinity,infinity). - Paul Barry, Apr 21 2010
Conjecture: a(n) +2*(-2*n+1)*a(n-1) +2*(n-1)*(2*n-3)*a(n-2)=0. - R. J. Mathar, Nov 24 2012
Remark: the above conjectured recurrence is true and can be obtained by the e.g.f. - Emanuele Munarini, Aug 31 2017
a(n) ~ n^n*2^(n-1/2)*exp(-n+sqrt(2*n)-1/4) * (1 + 7/(24*sqrt(2*n))). - Vaclav Kotesovec, Jun 22 2013
MAPLE
a:= proc(n) option remember; `if`(n<2, n+1,
(4*n-2)*a(n-1)-2*(n-1)*(2*n-3)*a(n-2))
end:
seq(a(n), n=0..20); # Alois P. Heinz, Sep 17 2013
MATHEMATICA
NumberOfTableaux[2n]
a[n_] := a[n] = If[n<2, n+1, (4*n-2)*a[n-1] - 2*(n-1)*(2*n-3)*a[n-2]]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Oct 13 2014, after Alois P. Heinz *)
Table[(-2)^n HypergeometricU[-n, 1/2, -(1/2)], {n, 0, 90}] (* Emanuele Munarini, Aug 31 2017 *)
PROG
(PARI) a(n)=sum(k=0, n, binomial(2*n, 2*k)*prod(i=1, k, 2*i-1))
(PARI) a(n)=if(n<0, 0, n*=2; n!*polcoeff(exp(x+x^2/2+x*O(x^n)), n))
CROSSREFS
Cf. A066224.
Sequence in context: A355349 A324061 A307524 * A355110 A088500 A295929
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Dec 19 2001
EXTENSIONS
More terms from Roberto E. Martinez II, Jan 09 2002
STATUS
approved