login
A066150
Maximal number of divisors of any n-digit number.
7
4, 12, 32, 64, 128, 240, 448, 768, 1344, 2304, 4032, 6720, 10752, 17280, 26880, 41472, 64512, 103680, 161280, 245760, 368640, 552960, 860160, 1290240, 1966080, 2764800, 4128768, 6193152, 8957952, 13271040, 19660800, 28311552, 41287680, 59719680, 88473600, 127401984, 181665792, 264241152, 382205952, 530841600
OFFSET
1,1
LINKS
FORMULA
a(n) = largest integer m such that A005179(m) < 10^n. - Max Alekseyev, Apr 29 2010
a(n) = A000005(A066151(n)). - Amiram Eldar, Jul 02 2019
EXAMPLE
a(1) = 4 since 8 has 4 divisors and that is the record for 1-digit numbers.
PROG
(PARI) a066150(m, n) = local(d, a, k, b); for(d=m, n, a=0; for(k=10^d, 10^(d+1)-1, b =numdiv(k); if(b>a, a=b)); print1(a, ", "))
a066150(0, 6)
CROSSREFS
Cf. A130130 (minimal number of divisors of any n-digit number). [Jaroslav Krizek, Jul 18 2010]
Sequence in context: A005104 A028921 A028922 * A233458 A335687 A348864
KEYWORD
nonn,base,easy
AUTHOR
Joseph L. Pe, Dec 12 2001
EXTENSIONS
One more term from Klaus Brockhaus, Dec 13 2001
Further terms from Vladeta Jovovic and Vladimir Baltic, Dec 16 2001
Extended further by David Wasserman, Jan 25 2002
STATUS
approved