The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A066063 Size of the smallest subset S of T={0,1,2,...,n} such that each element of T is the sum of two elements of S. 1
 1, 2, 2, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS If one counts all subsets S of T={0,1,2,...n} such that each number in T is the sum of two elements of S, sequence A066062 is obtained. Since each k-subset of S covers at most binomial(k + 1, 2) members of T, we have binomial(a(n) + 1, 2) >= n + 1. It follows that A002024(n-1) is a lower bound. - Rob Pratt, May 14 2004 This is an instance of the <= 2-stamp postage problem with n denominations. For n > 0, a(n) = 1 + the smallest i such that A001212(i) >= n (adding one adjusts for the fact that A001212 has offset 1). - Tim Peters (tim.one(AT)comcast.net), Aug 25 2006 LINKS EXAMPLE For n=2, it is clear that S={0,1} is the unique subset of {0,1,2} that satisfies the definition, so a(2)=2. CROSSREFS Cf. A066062, A002024, A001212. Sequence in context: A277903 A102515 A276571 * A123087 A071868 A179390 Adjacent sequences:  A066060 A066061 A066062 * A066064 A066065 A066066 KEYWORD nonn,more AUTHOR John W. Layman, Dec 01 2001 EXTENSIONS a(27)-a(50) from Rob Pratt, Aug 13 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 2 23:51 EDT 2022. Contains 357230 sequences. (Running on oeis4.)