

A064984


Triangle of coefficients T[n,m] of polynomials n, n^2, (n+2n^3)/3, n^2(2+n^2)/3, n(3+10n^2+2n^4)/15, etc. after multiplication by the denominators (A049606).


0



1, 0, 1, 1, 0, 2, 0, 2, 0, 1, 3, 0, 10, 0, 2, 0, 23, 0, 20, 0, 2, 45, 0, 196, 0, 70, 0, 4, 0, 132, 0, 154, 0, 28, 0, 1, 315, 0, 1636, 0, 798, 0, 84, 0, 2, 0, 5067, 0, 7180, 0, 1806, 0, 120, 0, 2, 14175, 0, 83754, 0, 50270, 0, 7392, 0, 330, 0, 4, 0, 146430, 0, 239327, 0, 74800, 0
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,6


COMMENTS

These polynomials are P(1, n) = 2*Sum[k, {k,1,n1}] + n, counting up to n and down again; P(2, m) = 2*Sum[P(1,n), {n,1,m1}] + P(1,m), meaning up and down to n and this for n from 1 up to m and down again; etc.


LINKS

Table of n, a(n) for n=1..73.


EXAMPLE

1+2+3+2+1 = 3^2, (1)+(1+2+1)+(1+2+3+2+1)+(1+2+1)+(1) = (n+2n^3)/3.


MATHEMATICA

CoefficientList[ #, n ]&/@(NestList[ ((2*Sum[ #, {n, k1} ]+(#/. n>k)//Simplify)/.k>n)&, n, 1+16 ] Denominator[ 2^#/#!&/@Range[ 16 ] ])


CROSSREFS

Row sums give A049606 again, final entry in each row seems to give A048896.
Sequence in context: A268189 A265247 A022879 * A323226 A307197 A328949
Adjacent sequences: A064981 A064982 A064983 * A064985 A064986 A064987


KEYWORD

nonn,tabl


AUTHOR

Wouter Meeussen, Oct 30 2001


STATUS

approved



