OFFSET
1,1
COMMENTS
Continued fraction expansion of the prime numbers. - Harvey P. Dale, Sep 25 2012
LINKS
FORMULA
1/A084255. - Franklin T. Adams-Watters, Jul 31 2009
From Peter Bala, Nov 26 2019: (Start)
Denoting the constant by c we have the related simple continued fraction expansions (prime(n) denotes the n-th prime number):
2*c = [4; 1, 1, 1, 2, 14, 5, 1, 1, 6, 34, 9, 1, 1, 11, 58, 15, 1, 1, 18, 82, 21, ..., 1, 1, (prime(3*n) - 1)/2, 2*prime(3*n+1), (prime(3*n+2) - 1)/2, ...];
(1/2)*c = [1; 6, 2, 1, 1, 3, 22, 6, 1, 1, 8, 38, 11, 1, 1, 14, 62, 18, 1, 1, 20, 86, 23, ..., 1, 1, (prime(3*n+1) - 1)/2, 2*prime(3*n+2), (prime(3*n+3) - 1)/2, ...];
(c + 1)/(c - 1) = [2; 1, 1, 10, 3, 1, 1, 5, 26, 8, 1, 1, 9, 46, 14, 1, 1, 15, 74, 20, ..., 1, 1, (prime(3*n+2) - 1)/2, 2*prime(3*n+3), (prime(3*n+4) - 1)/2, ...]. (End)
EXAMPLE
2.313036736433582906383951602641782476396689771803256340210124442144564731776...
MATHEMATICA
RealDigits[ N[ FromContinuedFraction[ Table[ Prime[n], {n, 1, 100} ]], 100]] [[1]]
RealDigits[FromContinuedFraction[Prime[Range[200]]], 10, 120][[1]] (* Harvey P. Dale, Sep 06 2021 *)
CROSSREFS
KEYWORD
cons,nonn
AUTHOR
Robert G. Wilson v, Oct 01 2001
STATUS
approved