This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A134411 a(n) is the smallest positive integer such that the numerator of (Sum_{k=1..n} 1/a(k)) is prime (or 1), for all positive integers n. 4
 1, 1, 1, 2, 3, 1, 3, 1, 1, 2, 6, 1, 1, 2, 4, 1, 1, 1, 3, 1, 1, 2, 3, 1, 2, 3, 2, 1, 4, 6, 1, 3, 1, 3, 2, 8, 3, 2, 3, 3, 1, 2, 6, 2, 1, 3, 3, 1, 5, 4, 3, 2, 1, 3, 1, 4, 2, 1, 3, 2, 1, 3, 1, 1, 3, 1, 1, 2, 6, 2, 4, 5, 3, 1, 3, 2, 1, 3, 3, 1, 3 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 LINKS EXAMPLE The sum of the reciprocals of the first 9 terms is 1 + 1 + 1 + 1/2 + 1/3 + 1 + 1/3 + 1 + 1 = 43/6. (And the numerator, 43, is prime.) Adding the reciprocal of 1 to this gets 49/6 (in reduced form). But 49 is composite. However, adding the reciprocal of 2 to 43/6 gets 23/3 (when written in reduced form). 23 is a prime, so therefore a(10) = 2. MATHEMATICA a = {1}; s = 1; Do[i = 1; While[ ! PrimeQ[Numerator[s + 1/i]], i++ ]; s = s + 1/i; AppendTo[a, i], {80}]; a (* Stefan Steinerberger, Oct 27 2007 *) CROSSREFS Cf. A134412, A134413. Sequence in context: A190549 A064442 A287566 * A126044 A114899 A220906 Adjacent sequences:  A134408 A134409 A134410 * A134412 A134413 A134414 KEYWORD nonn AUTHOR Leroy Quet, Oct 24 2007 EXTENSIONS More terms from Stefan Steinerberger, Oct 27 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.