login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A064092
Generalized Catalan numbers C(9; n).
7
1, 1, 10, 181, 4078, 102826, 2777212, 78571837, 2298558934, 68964092542, 2110472708140, 65620725560578, 2067160250751436, 65833929303952564, 2116166898185821792, 68565914052628406221, 2237022199842087256678
OFFSET
0,3
COMMENTS
a(n+1) = Y_{n}(n+1) = Z_{n}, n >= 0, in the Derrida et al. 1992 reference (see A064094) for alpha=9, beta =1 (or alpha=1, beta=9).
LINKS
FORMULA
G.f.: (1 + 9*x*c(9*x)/8)/(1+x/8) = 1/(1 - x*c(9*x)) with c(x) g.f. of Catalan numbers A000108.
a(n) = Sum_{m=0..n-1} (n-m)*binomial(n-1+m, m)*(9^m)/n.
a(n) = (-1/8)^n*(1 - 9*Sum_{k=0..n-1} C(k)*(-72)^k ), n >= 1, a(0) := 1; with C(n)=A000108(n) (Catalan).
a(n) = Sum_{k=0..n} A059365(n, k)*9^(n-k). - Philippe Deléham, Jan 19 2004
Conjecture: 8*n*a(n) +(-287*n+432)*a(n-1) +18*(-2*n+3)*a(n-2)=0. - R. J. Mathar, Jun 07 2013
a(n) ~ 4^n * 9^(n+1) / (289*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Jun 10 2019
MATHEMATICA
a[0]=1; a[n_]:= Sum[(n-m)*Binomial[n-1+m, m]*9^m/n, {m, 0, n-1}]; Table[a[n], {n, 0, 16}] (* Jean-François Alcover, Jul 09 2013 *)
CoefficientList[Series[(17 -Sqrt[1-36*x])/(2*(x+8)), {x, 0, 20}], x] (* G. C. Greubel, May 02 2019 *)
PROG
(PARI) a(n)=if(n<0, 0, polcoeff(serreverse((x-8*x^2)/(1+x)^2+O(x^(n+1))), n)) /* Ralf Stephan */
(PARI) my(x='x+O('x^20)); Vec((17 -sqrt(1-36*x))/(2*(x+8))) \\ G. C. Greubel, May 02 2019
(Magma) R<x>:=PowerSeriesRing(Rationals(), 20); Coefficients(R!( (17 - Sqrt(1-36*x))/(2*(x+8)) )); // G. C. Greubel, May 02 2019
(Sage) ((17 -sqrt(1-36*x))/(2*(x+8))).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, May 02 2019
CROSSREFS
Cf. A064091 (C(8, n)).
Sequence in context: A318796 A054918 A095807 * A171513 A240405 A304936
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Sep 13 2001
STATUS
approved