login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A064079 Zsigmondy numbers for a = 3, b = 1: Zs(n, 3, 1) is the greatest divisor of 3^n - 1^n (A024023) that is relatively prime to 3^m - 1^m for all positive integers m < n. 9
2, 1, 13, 5, 121, 7, 1093, 41, 757, 61, 88573, 73, 797161, 547, 4561, 3281, 64570081, 703, 581130733, 1181, 368089, 44287, 47071589413, 6481, 3501192601, 398581, 387440173, 478297, 34315188682441, 8401, 308836698141973, 21523361 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

By Zsigmondy's theorem, the n-th Zsigmondy number for bases a and b is not 1 except in the three cases (1) a = 2, b = 1, n = 1, (2) a = 2, b = 1, n = 6, (3) n = 2 and a+b is a power of 2.

LINKS

Table of n, a(n) for n=1..32.

K. Zsigmondy, Zur Theorie der Potenzreste, Monatsh. f. Math. 3 (1892) 265-284.

CROSSREFS

Cf. A024023, A064078, A064080, A064081, A064082, A064083.

Sequence in context: A245625 A292947 A143663 * A167584 A112226 A192795

Adjacent sequences:  A064076 A064077 A064078 * A064080 A064081 A064082

KEYWORD

nonn

AUTHOR

Jens Voß, Sep 04 2001

EXTENSIONS

More terms from Vladeta Jovovic, Sep 06 2001

Definition corrected by Jerry Metzger, Nov 04 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 17 14:47 EDT 2019. Contains 328114 sequences. (Running on oeis4.)