|
|
A064081
|
|
Zsigmondy numbers for a = 5, b = 1: Zs(n, 5, 1) is the greatest divisor of 5^n - 1^n (A024049) that is relatively prime to 5^m - 1^m for all positive integers m < n.
|
|
9
|
|
|
4, 3, 31, 13, 781, 7, 19531, 313, 15751, 521, 12207031, 601, 305175781, 13021, 315121, 195313, 190734863281, 5167, 4768371582031, 375601, 196890121, 8138021, 2980232238769531, 390001, 95397958987501, 203450521
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
By Zsigmondy's theorem, the n-th Zsigmondy number for bases a and b is not 1 except in the three cases (1) a = 2, b = 1, n = 1, (2) a = 2, b = 1, n = 6, (3) n = 2 and a+b is a power of 2.
|
|
LINKS
|
Table of n, a(n) for n=1..26.
K. Zsigmondy, Zur Theorie der Potenzreste, Monatsh. f. Math. 3 (1892) 265-284.
|
|
CROSSREFS
|
Cf. A024049, A064078, A064079, A064080, A064082, A064083.
Sequence in context: A072044 A286795 A127138 * A211364 A099438 A002178
Adjacent sequences: A064078 A064079 A064080 * A064082 A064083 A064084
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Jens Voß, Sep 04 2001
|
|
EXTENSIONS
|
More terms from Vladeta Jovovic, Sep 06 2001
Definition corrected by Jerry Metzger, Nov 04 2009
|
|
STATUS
|
approved
|
|
|
|