login
A064073
Generalized tangent number d(8,n).
5
8, 1408, 739328, 806453248, 1506300919808, 4297849713983488, 17390688314209599488, 94727563504456856240128, 668321603392783694711226368, 5928595592752632717848942215168, 64586438563324327821773422563688448, 847680268223550650928681687352090820608
OFFSET
1,1
LINKS
D. Shanks, Generalized Euler and class numbers. Math. Comp. 21 (1967) 689-694.
D. Shanks, Corrigenda to: "Generalized Euler and class numbers", Math. Comp. 22 (1968), 699
Eric Weisstein's World of Mathematics, Tangent Number.
FORMULA
E.g.f.: Sum_{k>0} a(k)x^(2k-1)/(2k-1)! = 2*sin(4x)/cos(8x).
a(n) = 2^(4n-1) * A000464(n-1).
a(n) = (2*n-1)!*[x^(2*n-1)](sec(8*x)*2*sin(4*x)). - Peter Luschny, Nov 21 2021
MAPLE
egf := sec(8*x)*2*sin(4*x): ser := series(egf, x, 24):
seq((2*n-1)!*coeff(ser, x, 2*n-1), n = 1..10); # Peter Luschny, Nov 21 2021
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Eric W. Weisstein, Aug 31 2001
STATUS
approved