login
A062984
a(n) = M(C(n)), where M(n) is Mertens's function (A002321) and C(n) is Chowla's function (A048050).
1
0, 0, 0, 0, 0, -2, 0, -1, -1, -2, 0, -1, 0, -2, -2, -2, 0, -3, 0, -2, -1, -3, 0, -1, -2, -1, -2, -1, 0, -1, 0, -3, -2, -3, -2, -3, 0, -2, -1, -3, 0, -3, 0, 0, -4, -2, 0, -3, -2, -2, -3, -3, 0, 0, -1, -1, -1, -4, 0, -3, 0, -3, 0, -1, -2, -2, 0, -1, -1, -4, 0, -2, 0, 0, -3, -1, -2, -2, 0, -3, 0, -3, 0, -4, -1, -3, -4, -1, 0, -1, -3, -3, -2, -3
OFFSET
1,6
LINKS
MATHEMATICA
A062984[n_] := Sum[MoebiusMu[k], {k, DivisorSigma[1, n] - n - 1}];
Array[A062984, 100] (* Paolo Xausa, May 03 2024 *)
PROG
(PARI) M(n)=sum(k=1, n, moebius(k));
C(n)=sigma(n)-n-1;
j=[]; for(n=1, 350, j=concat(j, M(C(n)))); j
(PARI) { for (n=1, 2000, a=sum(k=1, sigma(n) - n - 1, moebius(k)); write("b062984.txt", n, " ", a) ) } \\ Harry J. Smith, Aug 15 2009
CROSSREFS
Sequence in context: A116948 A101660 A276771 * A105243 A140081 A280596
KEYWORD
easy,sign
AUTHOR
Jason Earls, Jul 25 2001
STATUS
approved