login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A062103 Number of paths by which an unpromoted knight (keima) of Shogi can move to various squares on infinite board, if it starts from its origin square, the second leftmost square of the back rank. 4
0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 14 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,20

COMMENTS

Table formatted as a square array shows the top-left corner of the infinite board. This is an aerated and sligthly skewed variant of Catalan's triangle A009766.

LINKS

Table of n, a(n) for n=1..104.

Hans L. Bodlaender, The Chess Variant Pages

Fairbairn, Leggett et al., Information about Shogi (Japanese chess)

MAPLE

[seq(ShoogiKnightSeq(j), j=1..120)]; ShoogiKnightSeq := n -> ShoogiKnightTriangle(trinv(n-1)-1, (n-((trinv(n-1)*(trinv(n-1)-1))/2))-1);

ShoogiKnightTriangle := proc(r, m) option remember; if(m < 0) then RETURN(0); fi; if(r < 0) then RETURN(0); fi; if(m > r) then RETURN(0); fi; if((1 = r) and (0 = m)) then RETURN(1); fi; RETURN(ShoogiKnightTriangle(r-3, m-2) + ShoogiKnightTriangle(r-1, m-2)); end;

MATHEMATICA

trinv[n_] := Floor[(1 + Sqrt[8 n + 1])/2];

ShoogiKnightSeq[n_] := ShoogiKnightTriangle[trinv[n - 1] - 1, (n - ((trinv[n - 1]*(trinv[n - 1] - 1))/2)) - 1];

ShoogiKnightTriangle[r_, m_] := ShoogiKnightTriangle[r, m] = Which[m < 0, 0, r < 0, 0, m > r, 0, r == 1 && m == 0, 1, True, ShoogiKnightTriangle[r - 3, m - 2] + ShoogiKnightTriangle[r - 1, m - 2]];

Array[ShoogiKnightSeq, 120] (* Jean-Fran├žois Alcover, Mar 06 2016, adapted from Maple *)

CROSSREFS

A009766, A049604, A062104, trinv given at A054425.

Sequence in context: A181009 A270599 A091398 * A112314 A280799 A104261

Adjacent sequences:  A062100 A062101 A062102 * A062104 A062105 A062106

KEYWORD

nonn,tabl

AUTHOR

Antti Karttunen, May 30 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 11 21:15 EST 2017. Contains 295919 sequences.