login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A062103
Number of paths by which an unpromoted knight (keima) of Shogi can move to various squares on infinite board, if it starts from its origin square, the second leftmost square of the back rank.
4
0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 14
OFFSET
1,20
COMMENTS
Table formatted as a square array shows the top-left corner of the infinite board. This is an aerated and sligthly skewed variant of Catalan's triangle A009766.
MAPLE
[seq(ShoogiKnightSeq(j), j=1..120)]; ShoogiKnightSeq := n -> ShoogiKnightTriangle(trinv(n-1)-1, (n-((trinv(n-1)*(trinv(n-1)-1))/2))-1);
ShoogiKnightTriangle := proc(r, m) option remember; if(m < 0) then RETURN(0); fi; if(r < 0) then RETURN(0); fi; if(m > r) then RETURN(0); fi; if((1 = r) and (0 = m)) then RETURN(1); fi; RETURN(ShoogiKnightTriangle(r-3, m-2) + ShoogiKnightTriangle(r-1, m-2)); end;
MATHEMATICA
trinv[n_] := Floor[(1 + Sqrt[8 n + 1])/2];
ShoogiKnightSeq[n_] := ShoogiKnightTriangle[trinv[n - 1] - 1, (n - ((trinv[n - 1]*(trinv[n - 1] - 1))/2)) - 1];
ShoogiKnightTriangle[r_, m_] := ShoogiKnightTriangle[r, m] = Which[m < 0, 0, r < 0, 0, m > r, 0, r == 1 && m == 0, 1, True, ShoogiKnightTriangle[r - 3, m - 2] + ShoogiKnightTriangle[r - 1, m - 2]];
Array[ShoogiKnightSeq, 120] (* Jean-François Alcover, Mar 06 2016, adapted from Maple *)
CROSSREFS
A009766, A049604, A062104, trinv given at A054425.
Sequence in context: A270599 A091398 A374175 * A112314 A350872 A280799
KEYWORD
nonn,tabl
AUTHOR
Antti Karttunen, May 30 2001
STATUS
approved