|
|
A091398
|
|
a(n) = Product_{ p | n } (1 + Legendre(5,p) ).
|
|
2
|
|
|
1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,11
|
|
LINKS
|
Andrew Howroyd, Table of n, a(n) for n = 1..1000
|
|
MAPLE
|
with(numtheory); L := proc(n, N) local i, t1, t2; t1 := ifactors(n)[2]; t2 := mul((1+legendre(N, t1[i][1])), i=1..nops(t1)); end; [seq(L(n, 5), n=1..120)];
|
|
MATHEMATICA
|
a[n_] := Times @@ (1+KroneckerSymbol[5, #]& /@ FactorInteger[n][[All, 1]]);
Array[a, 105] (* Jean-François Alcover, Apr 08 2020 *)
|
|
PROG
|
(PARI) a(n)={my(f=factor(n)[, 1]); prod(i=1, #f, 1 + kronecker(5, f[i]))} \\ Andrew Howroyd, Jul 23 2018
|
|
CROSSREFS
|
Cf. A080891, A091379, A091396.
Sequence in context: A087781 A181009 A270599 * A062103 A112314 A280799
Adjacent sequences: A091395 A091396 A091397 * A091399 A091400 A091401
|
|
KEYWORD
|
nonn,mult
|
|
AUTHOR
|
N. J. A. Sloane, Mar 02 2004
|
|
STATUS
|
approved
|
|
|
|