

A061396


Number of "rooted indexfunctional forests" (Riffs) on n nodes. Number of "rooted odd trees with only exponent symmetries" (Rotes) on 2n+1 nodes.


35



1, 1, 2, 6, 20, 73, 281, 1124, 4618, 19387, 82765, 358245, 1568458, 6933765, 30907194, 138760603, 626898401, 2847946941, 13001772692, 59618918444, 274463781371, 1268064807409, 5877758070220, 27325789128330, 127384553264327, 595318139942874, 2788598203340643, 13090395266913748, 61571972632103632
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


REFERENCES

J. Awbrey, personal journal, circa 1978. Letter to N. J. A. Sloane, 1980Aug04.


LINKS

V. Jovovic, Table of n, a(n) for n=0..100
J. Awbrey, Illustration of initial terms
Jon Awbrey, Letter to N. J. A. Sloane, June 1979
Jon Awbrey, Letter to N. J. A. Sloane, August 1980
J. Awbrey, Riffs and Rotes
V. Jovovic, First 100 terms


FORMULA

G.f. A(x) = 1 + x + 2*x^2 + 6*x^3 + ... satisfies A(x) = Product_{j = 0 to infinity} (1 + x^(j+1)*A(x))^a_j.


EXAMPLE

These structures come from recursive primes' factorizations of natural numbers, where the recursion proceeds on both the exponents (^k) and the indices (_k) of the primes invoked in the factorization:
2 = (prime_1)^1 = (p_1)^1, briefly, p, weight of 1 node => a(1) = 1.
3 = (prime_2)^1 = (p_2)^1, briefly, p_p, weight of 2 nodes and
4 = (prime_1)^2 = (p_1)^2, briefly, p^p, weight of 2 nodes => a(2) = 2.


MAPLE

a(0) := 1: for k from 1 to 30 do A := add(a(i)*x^i, i=0..k): B := mul((1+x^(j+1)*A)^a(j), j=0..k1): a(k) := coeff(series(B, x, k+1), x, k): printf(`%d, `, a(k)); od:


CROSSREFS

Cf. A062504, A062860.
Sequence in context: A150139 A052884 A150140 * A230823 A192497 A104632
Adjacent sequences: A061393 A061394 A061395 * A061397 A061398 A061399


KEYWORD

nice,nonn,easy


AUTHOR

Jon Awbrey, Jun 09 2001


EXTENSIONS

Corrected and extended with Maple program by Vladeta Jovovic and David W. Wilson, Jun 20 2001


STATUS

approved



