login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A060894 n^8+n^7-n^5-n^4-n^3+n+1. 2

%I

%S 1,1,331,8401,80581,464881,1950271,6568801,18837001,47763361,

%T 109889011,233669041,465542221,878077201,1580623591,2732936641,

%U 4562284561,7384587841,11630180251,17874821521,26876632021,39619660081,57364832911

%N n^8+n^7-n^5-n^4-n^3+n+1.

%C a(n) = Phi_30(n) where Phi_k(x) is the k-th cyclotomic polynomial.

%H Harry J. Smith, <a href="/A060894/b060894.txt">Table of n, a(n) for n=0,...,1000</a>

%H Hisanori Mishima, <a href="http://www.asahi-net.or.jp/~KC2H-MSM/mathland/matha1/matha103.htm">Factorizations of many number sequences</a>

%H <a href="/index/Cy#CyclotomicPolynomialsValuesAtX">Index to values of cyclotomic polynomials of integer argument</a>

%H <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (9, -36, 84, -126, 126, -84, 36, -9, 1).

%F G.f.: (1-8*x+358*x^2+5374*x^3+16930*x^4+14284*x^5+3238*x^6+142*x^7+x^8)/ (1-x)^9. [_Colin Barker_, Apr 21 2012]

%p A060894 := proc(n)

%p numtheory[cyclotomic](30,n) ;

%p end proc:

%p seq(A060894(n),n=0..20) ; # _R. J. Mathar_, Feb 11 2014

%t Table[n^8+n^7-n^5-n^4-n^3+n+1,{n,0,30}] (* or *) LinearRecurrence[{9,-36,84,-126,126,-84,36,-9,1},{1,1,331,8401,80581,464881,1950271,6568801,18837001},30] (* _Harvey P. Dale_, Apr 07 2019 *)

%o (PARI) { for (n=0, 1000, write("b060894.txt", n, " ", n^8 + n^7 - n^5 - n^4 - n^3 + n + 1); ) } \\ _Harry J. Smith_, Jul 14 2009

%K nonn,easy

%O 0,3

%A _N. J. A. Sloane_, May 05 2001

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 22 14:04 EST 2020. Contains 331150 sequences. (Running on oeis4.)