

A060894


n^8+n^7n^5n^4n^3+n+1.


2



1, 1, 331, 8401, 80581, 464881, 1950271, 6568801, 18837001, 47763361, 109889011, 233669041, 465542221, 878077201, 1580623591, 2732936641, 4562284561, 7384587841, 11630180251, 17874821521, 26876632021, 39619660081, 57364832911
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


COMMENTS

a(n) = Phi_30(n) where Phi_k(x) is the kth cyclotomic polynomial.


LINKS

Harry J. Smith, Table of n, a(n) for n=0,...,1000
Hisanori Mishima, Factorizations of many number sequences
Index to values of cyclotomic polynomials of integer argument
Index entries for linear recurrences with constant coefficients, signature (9, 36, 84, 126, 126, 84, 36, 9, 1).


FORMULA

G.f.: (18*x+358*x^2+5374*x^3+16930*x^4+14284*x^5+3238*x^6+142*x^7+x^8)/ (1x)^9. [Colin Barker, Apr 21 2012]


MAPLE

A060894 := proc(n)
numtheory[cyclotomic](30, n) ;
end proc:
seq(A060894(n), n=0..20) ; # R. J. Mathar, Feb 11 2014


MATHEMATICA

Table[n^8+n^7n^5n^4n^3+n+1, {n, 0, 30}] (* or *) LinearRecurrence[{9, 36, 84, 126, 126, 84, 36, 9, 1}, {1, 1, 331, 8401, 80581, 464881, 1950271, 6568801, 18837001}, 30] (* Harvey P. Dale, Apr 07 2019 *)


PROG

(PARI) { for (n=0, 1000, write("b060894.txt", n, " ", n^8 + n^7  n^5  n^4  n^3 + n + 1); ) } \\ Harry J. Smith, Jul 14 2009


CROSSREFS

Sequence in context: A255155 A154083 A237475 * A002228 A199820 A255389
Adjacent sequences: A060891 A060892 A060893 * A060895 A060896 A060897


KEYWORD

nonn,easy


AUTHOR

N. J. A. Sloane, May 05 2001


STATUS

approved



