This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A060803 Sum_{k = 0..n} 2^(2^k). 15
 2, 6, 22, 278, 65814, 4295033110, 18446744078004584726, 340282366920938463481821351509772796182, 115792089237316195423570985008687907853610267032561502502939405359422902436118 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Partial sums of sequence 2,4,16,256, ... (sequence 2^2^n, see A001146). Number of distinct boolean functions with up to n arguments. - Paul Tarau (paul.tarau(AT)gmail.com), Jun 06 2008 LINKS Harry J. Smith, Table of n, a(n) for n = 0..11 FORMULA a(0) = 2 and a(n)-a(n-1) = 2^2^n, n>0. EXAMPLE a(3) = 278 because a(3) = 2^2^0 + 2^2^1 + 2^2^2 + 2^2^3 = 2 + 4 + 16 + 256. PROG Haskell code generating the infinite sequence: scanl (+) 2 (map (\x->2^2^x) [1..]) - Paul Tarau (paul.tarau(AT)gmail.com), Jun 06 2008 (PARI) { for (n=0, 11, write("b060803.txt", n, " ", sum(k=0, n, 2^(2^k))); ) } [Harry J. Smith, Jul 12 2009] CROSSREFS Cf. A001146, A001147, A115245. Sequence in context: A095856 A180367 A111061 * A213134 A140837 A264319 Adjacent sequences:  A060800 A060801 A060802 * A060804 A060805 A060806 KEYWORD nonn AUTHOR Varol Akman (akman(AT)cs.bilkent.edu.tr), Apr 28 2001 EXTENSIONS More terms from Benoit Cloitre, May 13 2002 Edited by N. J. A. Sloane, Jun 07 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.