

A060803


Sum_{k = 0..n} 2^(2^k).


15



2, 6, 22, 278, 65814, 4295033110, 18446744078004584726, 340282366920938463481821351509772796182, 115792089237316195423570985008687907853610267032561502502939405359422902436118
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

Partial sums of sequence 2,4,16,256, ... (sequence 2^2^n, see A001146).
Number of distinct boolean functions with up to n arguments.  Paul Tarau (paul.tarau(AT)gmail.com), Jun 06 2008


LINKS

Harry J. Smith, Table of n, a(n) for n = 0..11
Paul Tarau, Isomorphic Data Encodings and their Generalization to Hylomorphisms on Hereditarily Finite Data Types


FORMULA

a(0) = 2 and a(n)a(n1) = 2^2^n, n>0.


EXAMPLE

a(3) = 278 because a(3) = 2^2^0 + 2^2^1 + 2^2^2 + 2^2^3 = 2 + 4 + 16 + 256.


PROG

Haskell code generating the infinite sequence: scanl (+) 2 (map (\x>2^2^x) [1..])  Paul Tarau (paul.tarau(AT)gmail.com), Jun 06 2008
(PARI) { for (n=0, 11, write("b060803.txt", n, " ", sum(k=0, n, 2^(2^k))); ) } [Harry J. Smith, Jul 12 2009]


CROSSREFS

Cf. A001146, A001147, A115245.
Sequence in context: A095856 A180367 A111061 * A213134 A140837 A264319
Adjacent sequences: A060800 A060801 A060802 * A060804 A060805 A060806


KEYWORD

nonn


AUTHOR

Varol Akman (akman(AT)cs.bilkent.edu.tr), Apr 28 2001


EXTENSIONS

More terms from Benoit Cloitre, May 13 2002
Edited by N. J. A. Sloane, Jun 07 2008


STATUS

approved



