login
A060803
a(n) = Sum_{k=0..n} 2^(2^k).
18
2, 6, 22, 278, 65814, 4295033110, 18446744078004584726, 340282366920938463481821351509772796182, 115792089237316195423570985008687907853610267032561502502939405359422902436118
OFFSET
0,1
COMMENTS
Partial sums of A001146.
Number of Boolean functions with up to n arguments. - Paul Tarau (paul.tarau(AT)gmail.com), Jun 06 2008
FORMULA
a(0) = 2 and a(n) - a(n-1) = 2^2^n, n > 0.
EXAMPLE
a(3) = 278 because a(3) = 2^2^0 + 2^2^1 + 2^2^2 + 2^2^3 = 2 + 4 + 16 + 256.
MATHEMATICA
Accumulate[2^(2^Range[0, 10])] (* Harvey P. Dale, Sep 25 2023 *)
PROG
(Haskell) -- code generating the infinite sequence:
scanl (+) 2 (map (\x->2^2^x) [1..]) - Paul Tarau (paul.tarau(AT)gmail.com), Jun 06 2008
(PARI) { for (n=0, 11, write("b060803.txt", n, " ", sum(k=0, n, 2^(2^k))); ) } \\ Harry J. Smith, Jul 12 2009
CROSSREFS
KEYWORD
nonn
AUTHOR
Varol Akman (akman(AT)cs.bilkent.edu.tr), Apr 28 2001
EXTENSIONS
More terms from Benoit Cloitre, May 13 2002
Edited by N. J. A. Sloane, Jun 07 2008
STATUS
approved