login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A060800 a(n) = p^2 + p + 1 where p runs through the primes. 16
7, 13, 31, 57, 133, 183, 307, 381, 553, 871, 993, 1407, 1723, 1893, 2257, 2863, 3541, 3783, 4557, 5113, 5403, 6321, 6973, 8011, 9507, 10303, 10713, 11557, 11991, 12883, 16257, 17293, 18907, 19461, 22351, 22953, 24807, 26733, 28057, 30103, 32221 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Terms are divisible by 3 iff p is of the form 6*m+1 (A002476). - Michel Marcus, Jan 15 2017

LINKS

Harry J. Smith, Table of n, a(n) for n = 1..1000

FORMULA

a(n) = A036690(n) + 1.

a(n) = 1 + A008864(n)*A000040(n) = (A030078(n) - 1)/A006093(n). - Reinhard Zumkeller, Aug 06 2007

a(n) = sigma(prime(n)^2) = A000203(A000040(n)^2). - Zak Seidov, Feb 13 2016

a(n) = A000203(A001248(n)). - Michel Marcus, Feb 15 2016

EXAMPLE

a(3)=31 because 5^2 + 5 + 1 = 31.

MAPLE

A060800:= n -> map (p -> p^(2)+p+1, ithprime(n)):

seq (A060800(n), n=1..41); # Jani Melik, Jan 25 2011

MATHEMATICA

#^2 + # + 1&/@Prime[Range[200]] (* Vincenzo Librandi, Mar 20 2014 *)

PROG

(PARI) { n=0; forprime (p=2, prime(1000), write("b060800.txt", n++, " ", p^2 + p + 1); ) } \\ Harry J. Smith, Jul 13 2009

(MAGMA) [p^2+p+1: p in PrimesUpTo(200)]; // Vincenzo Librandi, Mar 20 2014

CROSSREFS

Cf. A001248, A131991, A131992, A131993.

Cf. A000040, A000203. - Zak Seidov, Feb 13 2016

Sequence in context: A181141 A031158 A091431 * A272204 A107146 A201601

Adjacent sequences:  A060797 A060798 A060799 * A060801 A060802 A060803

KEYWORD

nonn,easy

AUTHOR

Jason Earls (zevi_35711(AT)yahoo.com), Apr 27 2001

EXTENSIONS

More terms from Larry Reeves (larryr(AT)acm.org), May 03 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified May 25 05:56 EDT 2017. Contains 287012 sequences.