login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A060581
Number of homeomorphically irreducible general graphs on 6 labeled node and with n edges.
6
1, 15, 81, 441, 2151, 9957, 43122, 174162, 666267, 2403987, 8183601, 26281065, 79660856, 228180456, 618992466, 1595081266, 3918506466, 9211519476, 20797923546, 45258309066, 95225448306, 194283668576, 385361919996
OFFSET
0,2
COMMENTS
A homeomorphically irreducible general graph is a graph with multiple edges and loops and without nodes of degree 2.
REFERENCES
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983.
FORMULA
G.f.: (6*x^30 - 30*x^29 - 90*x^28 + 898*x^27 - 5703*x^26 + 67854*x^25 - 552925*x^24 + 2795730*x^23 - 9663357*x^22 + 24476292*x^21 - 47540991*x^20 + 73129860*x^19 - 91373250*x^18 + 94675608*x^17 - 82549758*x^16 + 60794764*x^15 - 37293240*x^14 + 18277860*x^13 - 6426742*x^12 + 945252*x^11 + 680499*x^10 - 726250*x^9 + 423825*x^8 - 187536*x^7 + 66981*x^6 - 19092*x^5 + 4065*x^4 - 560*x^3 + 24*x^2 + 6*x - 1)/(x - 1)^21. E.g.f. for homeomorphically irreducible general graphs with n nodes and k edges is (1 + x*y)^( - 1/2)*exp( - x*y/2 + x^2*y^2/4)*Sum_{k >= 0} 1/(1 - x)^binomial(k + 1, 2)*exp( - x^2*y*k^2/(2*(1 + x*y)) - x^2*y*k/2)*y^k/k!.
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Apr 03 2001
STATUS
approved