login
A060518
Primes p that have exactly two primitive roots that are not primitive roots mod p^2.
2
367, 863, 907, 1327, 1549, 1579, 1607, 1619, 1697, 2221, 2267, 2551, 2671, 2677, 2693, 2719, 2837, 3209, 3313, 4049, 4373, 4391, 4909, 5261, 5669, 5693, 6007, 6269, 6343, 6547, 6653, 6703, 6857, 6907, 7013, 7559, 7573, 7583, 7669, 7723, 7919
OFFSET
1,1
COMMENTS
If x is a primitive root mod prime p then either x is a primitive root mod p^2 or x has order p-1 mod p^2.
EXAMPLE
159 and 205 are primitive roots mod 367, but not mod 367^2.
CROSSREFS
KEYWORD
nonn
AUTHOR
Jud McCranie, Mar 24 2001
STATUS
approved