login
This site is supported by donations to The OEIS Foundation.

 

Logo

The submissions stack has been unacceptably high for several months now. Please voluntarily restrict your submissions and please help with the editing. (We don't want to have to impose further limits.)

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A060515 Integers i > 1 for which there is no prime p such that i is a solution mod p of x^2 = 2. 2
2, 10, 28, 39, 45, 54, 58, 74, 87, 88, 101, 108, 114, 116, 130, 143, 147, 156, 164, 168, 178, 180, 181, 225, 228, 235, 238, 242, 244, 248, 256, 263, 270, 271, 277, 304, 305, 317, 318, 325, 333, 334, 338, 347, 363, 367, 373, 374, 378, 380, 381, 386, 397, 402 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Solutions mod p are represented by integers from 0 to p-1. The following equivalences holds for i > 1: There is a prime p such that i is a solution mod p of x^2 = 2 iff i^2-2 has a prime factor > i; i is a solution mod p of x^2 = 2 iff p is a prime factor of i^2-2 and p > i.

LINKS

Charles R Greathouse IV, Table of n, a(n) for n = 1..10000

FORMULA

Integer i > 1 is a term of this sequence iff i^2-2 has no prime factor > i.

EXAMPLE

a(1) = 2, since there is no prime p such that 2 is a solution mod p of x^2 = 2. a(2) = 10, since there is no prime p such that 10 is a solution mod p of x^2 = 2 and for each integer i from 3 to 9 there is a prime q such that i is a solution mod q of x^2 = 2 (cf. A059772).

PROG

(PARI) is(n)=my(f=factor(n^2-2)[, 1]); n>1&&f[#f]<=n \\ Charles R Greathouse IV, Aug 24 2013

CROSSREFS

Cf. A038873, A059772.

Sequence in context: A196648 A220700 A057753 * A109723 A053594 A006331

Adjacent sequences:  A060512 A060513 A060514 * A060516 A060517 A060518

KEYWORD

nonn

AUTHOR

Klaus Brockhaus, Mar 24 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified August 29 01:49 EDT 2015. Contains 261184 sequences.