login
A060371
a(n) = (prime(n) - 1)! + 1.
3
2, 3, 25, 721, 3628801, 479001601, 20922789888001, 6402373705728001, 1124000727777607680001, 304888344611713860501504000001, 265252859812191058636308480000001, 371993326789901217467999448150835200000001
OFFSET
1,1
COMMENTS
If the prime p is in A055469, that is if p = 2, 7, 11, 29, ... = A055469(j) which is valid for the first, 4th, 5th, 10th,.... entry here with j = 1, 2, 3, ..., then a(n) = A052295[A067186(j)] + 1. - R. J. Mathar, Apr 27 2007
It follows from Wilson's theorem that a(n) is divisible by the n-th prime. - Alonso del Arte, Feb 07 2014
LINKS
Harry J. Smith, Table of n, a(n) for n = 1..88 (adapted by Vincenzo Librandi, Oct 17 2017)
Takashi Agoh, Karl Dilcher and Ladislav Skula, Wilson quotients for composite moduli, Math. Comp. 67 (1998), 843-861. MR 98h:11003.
C. K. Caldwell, Wilson Primes
R. Crandall, K. Dilcher and C. Pomerance, A search for Wieferich and Wilson primes, Math. Comp., 66 (1997), 433-449. MR 97c:11004.
MATHEMATICA
Table[(Prime[n] - 1)! + 1, {n, 12}] (* Alonso del Arte, Feb 07 2014 *)
PROG
(PARI) { n=1; forprime (p=1, 524, write("b060371.txt", n++, " ", (p - 1)! + 1); ) } \\ Harry J. Smith, Jul 04 2009
(Magma) [Factorial(NthPrime(n)-1)+1: n in [1..15]]; // Vincenzo Librandi, Oct 17 2017
CROSSREFS
Subsequence of A038507. - Michel Marcus, Oct 17 2017
Sequence in context: A208203 A109586 A127231 * A358390 A130975 A002748
KEYWORD
nonn
AUTHOR
Jason Earls, Apr 01 2001
EXTENSIONS
Corrected offset by Alonso del Arte, Feb 07 2014
STATUS
approved