login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A059562
Beatty sequence for log(Pi)/(log(Pi)-1).
4
7, 15, 23, 31, 39, 47, 55, 63, 71, 79, 87, 94, 102, 110, 118, 126, 134, 142, 150, 158, 166, 174, 181, 189, 197, 205, 213, 221, 229, 237, 245, 253, 261, 268, 276, 284, 292, 300, 308, 316, 324, 332, 340, 348, 355, 363, 371, 379, 387, 395, 403, 411, 419, 427
OFFSET
1,1
LINKS
Aviezri S. Fraenkel, Jonathan Levitt and Michael Shimshoni, Characterization of the set of values f(n)=[n alpha], n=1,2,..., Discrete Math. 2 (1972), no.4, 335-345.
Eric Weisstein's World of Mathematics, Beatty Sequence
FORMULA
a(n) = floor(n*(1 + 1/(A053510 - 1))). - Paolo Xausa, Jul 05 2024
MATHEMATICA
Floor[Range[100]*(1 + 1/(Log[Pi] - 1))] (* Paolo Xausa, Jul 05 2024 *)
PROG
(PARI) { default(realprecision, 100); b=log(Pi)/(log(Pi) - 1); for (n = 1, 2000, write("b059562.txt", n, " ", floor(n*b)); ) } \\ Harry J. Smith, Jun 28 2009
(PARI) A059562(n, c=1-1/log(Pi))=n\c \\ Use \pXX to set sufficiently large precision. - M. F. Hasler, Oct 06 2014
CROSSREFS
Beatty complement is A059561.
Cf. A053510.
Sequence in context: A136768 A031490 A189754 * A017149 A133655 A004771
KEYWORD
nonn,easy
AUTHOR
Mitch Harris, Jan 22 2001
STATUS
approved