login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A059556
Beatty sequence for 1 + 1/gamma.
2
2, 5, 8, 10, 13, 16, 19, 21, 24, 27, 30, 32, 35, 38, 40, 43, 46, 49, 51, 54, 57, 60, 62, 65, 68, 71, 73, 76, 79, 81, 84, 87, 90, 92, 95, 98, 101, 103, 106, 109, 112, 114, 117, 120, 122, 125, 128, 131, 133, 136, 139, 142, 144, 147, 150, 153, 155, 158, 161, 163, 166
OFFSET
1,1
COMMENTS
Differs from A054088 at indices 56, 71, 112, 127, 142, 168, 183 etc. - R. J. Mathar, Oct 05 2008
Let r = gamma (the Euler constant, 0.5772...). When {k*r, k >= 1} is jointly ranked with the positive integers, A059555(n) is the position of n and A059556(n) is the position of n*r. - Clark Kimberling, Oct 21 2014
LINKS
Aviezri S. Fraenkel, Jonathan Levitt, Michael Shimshoni, Characterization of the set of values f(n)=[n alpha], n=1,2,..., Discrete Math. 2 (1972), no.4, 335-345.
Eric Weisstein's World of Mathematics, Beatty Sequence.
MATHEMATICA
t = N[Table[k*EulerGamma, {k, 1, 200}]]; u = Union[Range[200], t]
Flatten[Table[Flatten[Position[u, n]], {n, 1, 100}]] (* A059556 *)
Flatten[Table[Flatten[Position[u, t[[n]]]], {n, 1, 100}]] (* A059555 *)
(* Clark Kimberling, Oct 21 2014 *)
PROG
(PARI) { default(realprecision, 100); b=1 + 1/Euler; for (n = 1, 2000, write("b059556.txt", n, " ", floor(n*b)); ) } \\ Harry J. Smith, Jun 28 2009
CROSSREFS
Beatty complement is A059555.
Sequence in context: A022843 A054088 A186540 * A248520 A247780 A189365
KEYWORD
nonn,easy
AUTHOR
Mitch Harris, Jan 22 2001
STATUS
approved