login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A059535
Beatty sequence for Pi^2/6, or zeta(2).
3
1, 3, 4, 6, 8, 9, 11, 13, 14, 16, 18, 19, 21, 23, 24, 26, 27, 29, 31, 32, 34, 36, 37, 39, 41, 42, 44, 46, 47, 49, 50, 52, 54, 55, 57, 59, 60, 62, 64, 65, 67, 69, 70, 72, 74, 75, 77, 78, 80, 82, 83, 85, 87, 88, 90, 92, 93, 95, 97, 98, 100, 101, 103, 105, 106, 108, 110, 111
OFFSET
1,2
LINKS
Aviezri S. Fraenkel, Jonathan Levitt, and Michael Shimshoni, Characterization of the set of values f(n)=[n alpha], n=1,2,..., Discrete Math. 2 (1972), no.4, 335-345.
Eric Weisstein's World of Mathematics, Beatty Sequence.
FORMULA
a(n) = floor(n*A013661). - Paolo Xausa, Jul 06 2024
MATHEMATICA
Floor[Range[100]*Zeta[2]] (* Paolo Xausa, Jul 06 2024 *)
PROG
(PARI) { default(realprecision, 100); b=zeta(2); for (n = 1, 2000, write("b059535.txt", n, " ", floor(n*b)); ) } \\ Harry J. Smith, Jun 27 2009
CROSSREFS
Cf. A013661. Beatty complement is A059536.
Sequence in context: A292663 A182772 A292652 * A061402 A330066 A047206
KEYWORD
nonn,easy
AUTHOR
Mitch Harris, Jan 22 2001
STATUS
approved