login
A059526
Decimal expansion of real part of solution to z = log z.
9
3, 1, 8, 1, 3, 1, 5, 0, 5, 2, 0, 4, 7, 6, 4, 1, 3, 5, 3, 1, 2, 6, 5, 4, 2, 5, 1, 5, 8, 7, 6, 6, 4, 5, 1, 7, 2, 0, 3, 5, 1, 7, 6, 1, 3, 8, 7, 1, 3, 9, 9, 8, 6, 6, 9, 2, 2, 3, 7, 8, 6, 0, 6, 2, 2, 9, 4, 1, 3, 8, 7, 1, 5, 5, 7, 6, 2, 6, 9, 7, 9, 2, 3, 2, 4, 8, 6, 3, 8, 4, 8, 9, 8, 6, 3, 6, 1, 6, 3, 8, 4, 4, 2, 1, 4
OFFSET
0,1
COMMENTS
Repeatedly take logs, starting from any number not equal to 0, 1, e, e^e, e^(e^e), etc. and you will converge to 0.31813150... + 1.33723570...*I.
A complex number w with a negative imaginary part will converge to the conjugate of z since log(conjugate(w)) = conjugate(log(w)). - Gerald McGarvey, Mar 02 2009
This z and its conjugate are the only two complex solutions of z=log(z) on the principal branch of log(z), and of exp(z)=z for |arg(z)| <= Pi. They are also the only nontrivial (z!=0) principal branch solutions of z=W(z^2), W being the Lambert W-function. Though the two values are iterative attractors of the mapping z->log(z), the convergence is rather slow; the precision improves by slightly more than one binary bit every 2.25 iterations (about 7500 iterations are needed to make stable the first 1000 decimal digits). - Stanislav Sykora, Jun 07 2015
LINKS
Wolfram Research, FixedPoint
EXAMPLE
z = 0.31813150520476413531265425158766451720351761387139986692237... + 1.33723570143068940890116214319371061253950213846051241887631... *i
MATHEMATICA
RealDigits[ Re[ N[ FixedPoint[ Log, 1 + I, 910], 105]]] [[1]]
RealDigits[ N[ Re[ ProductLog[-1]], 105]][[1]] (* Jean-François Alcover, Feb 01 2012 *)
RealDigits[Re[x/.FindRoot[x-Log[x]==0, {x, .5, 1}, WorkingPrecision->200]], 10, 120][[1]] (* Harvey P. Dale, Aug 07 2022 *)
PROG
(PARI) z=I; for(k=1, 16000, z=log(z)); real(z) \\ Stanislav Sykora, Jun 07 2015 \\ Using realprecision \p 2010
(PARI) z=I; for(k=1, 10, z-=(z-log(z))/(1-1/z)); real(z) \\ Jeremy Tan, Sep 23 2017
CROSSREFS
Imaginary part is A059527.
Cf. A030178.
Cf: A277681 (another fixed point of exp(z)).
Sequence in context: A195731 A331187 A154294 * A355828 A091839 A155789
KEYWORD
cons,nonn,nice
AUTHOR
Fabian Rothelius, Jan 21 2001
EXTENSIONS
More terms from Vladeta Jovovic, Feb 26 2001
Edited and extended by Robert G. Wilson v, Aug 22 2002
STATUS
approved