The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A059450 Triangle read by rows: T(n,k) = Sum_{j=0..k-1} T(n,j) + Sum_{j=1..n-k} T(n-j,k), with T(0,0)=1 and T(n,k) = 0 for k > n. 7
 1, 1, 1, 2, 3, 5, 4, 8, 17, 29, 8, 20, 50, 107, 185, 16, 48, 136, 336, 721, 1257, 32, 112, 352, 968, 2370, 5091, 8925, 64, 256, 880, 2640, 7116, 17304, 37185, 65445, 128, 576, 2144, 6928, 20168, 53596, 129650, 278635, 491825, 256, 1280, 5120, 17664, 54880 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS G.f. A(x,y) satisfies 0 = -(1-x)^2 + (1-x)(1-4x+3xy)A + 2x(1-2x-2y+3xy)A^2. G.f.: (1-x)(-(1-4x+3xy) + sqrt((1-xy)(1-9xy)))/(4x(1-2x-2y+3xy)) = 2(1-x)/(1-4x+3xy+sqrt((1-xy)(1-9xy))). - Michael Somos, Mar 06 2004 T(n,k) = number of below-diagonal lattice paths from (0,0) to (n,k) consisting of steps (k,0) (k=1,2,...) and (0,k) (k=1,2,...). Example: T(2,1)=3 because we have (1,0)(1,0)(0,1), (2,0)(0,1) and (1,0)(0,1)(1,0). - Emeric Deutsch, Mar 19 2004 T(n,k) is odd if and only if (n,k) = (0,0), k = n > 0, or k + 1 = n > 0. - Peter Kagey, Apr 20 2020 REFERENCES Wen-jin Woan, Diagonal lattice paths, Congressus Numerantium, 151, 2001, 173-178. LINKS Peter Kagey, Table of n, a(n) for n = 0..10011 (141 rows flattened, first 50 rows from G. C. Greubel) C. Coker, Enumerating a class of lattice paths, Discrete Math., 271 (2003), 13-28. EXAMPLE 1; 1,  1; 2,  3,  5; 4,  8, 17,  29; 8, 20, 50, 107, 185; MAPLE l := 1:a[0, 0] := 1:b[l] := 1:T := (n, k)->sum(a[n, j], j=0..k-1)+sum(a[n-j, k], j=1..n-k): for n from 1 to 15 do for k from 0 to n do a[n, k] := T(n, k):l := l+1:b[l] := a[n, k]: od:od:seq(b[w], w=1..l); # Sascha Kurz MATHEMATICA t[0, 0] = 1; t[n_, k_] /; k > n = 0; t[n_, k_] := t[n, k] = Sum[t[n, j], {j, 0, k-1}] + Sum[t[n-j, k], {j, 1, n-k}]; Table[t[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 08 2014 *) PROG (PARI) T(n, k)=if(k<0|k>n, 0, polcoeff(polcoeff(2*(1-x)/((1-4*x+3*x*y)+sqrt((1-x*y)*(1-9*x*y)+x^2*O(x^n))), n), k)) /* Michael Somos, Mar 06 2004 */ (PARI) T(n, k)=local(A, t); if(k<0|k>n, 0, A=matrix(n+1, n+1); A[1, 1]=1; for(m=1, n, t=0; for(j=0, m, t+=(A[m+1, j+1]=t+sum(i=1, m-j, A[m-i+1, j+1])))); A[n+1, k+1]) /* Michael Somos, Mar 06 2004 */ (PARI) T(n, k)=if(k<0|k>n, 0, (n==0)+sum(j=0, k-1, T(n, j))+sum(j=1, n-k, T(n-j, k))) /* Michael Somos, Mar 06 2004 */ CROSSREFS Columns include A000079, A001792 (I guess), A086866, A059231. Rows sums give A086871. A059231(n) = T(n, n). Sequence in context: A244154 A182395 A244983 * A255972 A060000 A074050 Adjacent sequences:  A059447 A059448 A059449 * A059451 A059452 A059453 KEYWORD nonn,tabl,easy AUTHOR N. J. A. Sloane, Sep 16 2003 EXTENSIONS More terms from Ray Chandler, Sep 17 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 19 02:54 EDT 2020. Contains 337175 sequences. (Running on oeis4.)