login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A059450 Triangle read by rows: T(n,k) = Sum_{j=0..k-1} T(n,j) + Sum_{j=1..n-k} T(n-j,k), with T(0,0)=1 and T(n,k) = 0 for k>n. 3
1, 1, 1, 2, 3, 5, 4, 8, 17, 29, 8, 20, 50, 107, 185, 16, 48, 136, 336, 721, 1257, 32, 112, 352, 968, 2370, 5091, 8925, 64, 256, 880, 2640, 7116, 17304, 37185, 65445, 128, 576, 2144, 6928, 20168, 53596, 129650, 278635, 491825, 256, 1280, 5120, 17664, 54880 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

G.f. A(x,y) satisfies 0=-(1-x)^2+(1-x)(1-4x+3xy)A +2x(1-2x-2y+3xy)A^2. G.f.: (1-x)(-(1-4x+3xy)+sqrt((1-xy)(1-9xy)))/(4x(1-2x-2y+3xy))=2(1-x)/(1-4x+3xy+sqrt((1-xy)(1-9xy))). - Michael Somos, Mar 06 2004

T(n,k)=number of below-diagonal lattice paths from (0,0) to (n,k) consisting of steps (k,0) (k=1,2,...) and (0,k) (k=1,2,...). Example: T(2,1)=3 because we have (1,0)(1,0)(0,1), (2,0)(0,1) and (1,0)(0,1)(1,0). - Emeric Deutsch, Mar 19 2004

REFERENCES

C. Coker, Enumerating a class of lattice paths, Discrete Math., 271 (2003), 13-28.

Wen-jin Woan, Diagonal lattice paths, Congressus Numerantium, 151, 2001, 173-178.

LINKS

Table of n, a(n) for n=0..49.

EXAMPLE

1; 1,2; 2,3,5; 4,8,17,29; 8,20,50,107,185; ...

MAPLE

l := 1:a[0, 0] := 1:b[l] := 1:T := (n, k)->sum(a[n, j], j=0..k-1)+sum(a[n-j, k], j=1..n-k): for n from 1 to 15 do for k from 0 to n do a[n, k] := T(n, k):l := l+1:b[l] := a[n, k]: od:od:seq(b[w], w=1..l); - Sascha Kurz

MATHEMATICA

t[0, 0] = 1; t[n_, k_] /; k > n = 0; t[n_, k_] := t[n, k] = Sum[t[n, j], {j, 0, k-1}] + Sum[t[n-j, k], {j, 1, n-k}]; Table[t[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-Fran├žois Alcover, Jan 08 2014 *)

PROG

(PARI) T(n, k)=if(k<0|k>n, 0, polcoeff(polcoeff(2*(1-x)/((1-4*x+3*x*y)+sqrt((1-x*y)*(1-9*x*y)+x^2*O(x^n))), n), k)) /* Michael Somos, Mar 06 2004 */

(PARI) T(n, k)=local(A, t); if(k<0|k>n, 0, A=matrix(n+1, n+1); A[1, 1]=1; for(m=1, n, t=0; for(j=0, m, t+=(A[m+1, j+1]=t+sum(i=1, m-j, A[m-i+1, j+1])))); A[n+1, k+1]) /* Michael Somos, Mar 06 2004 */

(PARI) T(n, k)=if(k<0|k>n, 0, (n==0)+sum(j=0, k-1, T(n, j))+sum(j=1, n-k, T(n-j, k))) /* Michael Somos, Mar 06 2004 */

CROSSREFS

Columns include A000079, A001792 (I guess), A086866, A059231. Rows sums give A086871.

A059231(n)=T(n, n).

Sequence in context: A244154 A182395 A244983 * A255972 A060000 A074050

Adjacent sequences:  A059447 A059448 A059449 * A059451 A059452 A059453

KEYWORD

nonn,tabl,easy

AUTHOR

N. J. A. Sloane, Sep 16 2003

EXTENSIONS

More terms from Ray Chandler, Sep 17 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 11 06:55 EST 2016. Contains 279043 sequences.