login
This site is supported by donations to The OEIS Foundation.

 

Logo

110 people attended OEIS-50 (videos, suggestions); annual fundraising drive to start soon (donate); editors, please edit! (stack is over 300), your editing is more valuable than any donation.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A059450 Triangle read by rows: T(n,k) = Sum_{j=0..k-1} T(n,j) + Sum_{j=1..n-k} T(n-j,k), with T(0,0)=1 and T(n,k) = 0 for k>n. 3
1, 1, 1, 2, 3, 5, 4, 8, 17, 29, 8, 20, 50, 107, 185, 16, 48, 136, 336, 721, 1257, 32, 112, 352, 968, 2370, 5091, 8925, 64, 256, 880, 2640, 7116, 17304, 37185, 65445, 128, 576, 2144, 6928, 20168, 53596, 129650, 278635, 491825, 256, 1280, 5120, 17664, 54880 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

G.f. A(x,y) satisfies 0=-(1-x)^2+(1-x)(1-4x+3xy)A +2x(1-2x-2y+3xy)A^2. G.f.: (1-x)(-(1-4x+3xy)+sqrt((1-xy)(1-9xy)))/(4x(1-2x-2y+3xy))=2(1-x)/(1-4x+3xy+sqrt((1-xy)(1-9xy))). - Michael Somos, Mar 06 2004

T(n,k)=number of below-diagonal lattice paths from (0,0) to (n,k) consisting of steps (k,0) (k=1,2,...) and (0,k) (k=1,2,...). Example: T(2,1)=3 because we have (1,0)(1,0)(0,1), (2,0)(0,1) and (1,0)(0,1)(1,0). - Emeric Deutsch, Mar 19 2004

REFERENCES

C. Coker, Enumerating a class of lattice paths, Discrete Math., 271 (2003), 13-28.

Wen-jin Woan, Diagonal lattice paths, Congressus Numerantium, 151, 2001, 173-178.

LINKS

Table of n, a(n) for n=0..49.

EXAMPLE

1; 1,2; 2,3,5; 4,8,17,29; 8,20,50,107,185; ...

MAPLE

l := 1:a[0, 0] := 1:b[l] := 1:T := (n, k)->sum(a[n, j], j=0..k-1)+sum(a[n-j, k], j=1..n-k): for n from 1 to 15 do for k from 0 to n do a[n, k] := T(n, k):l := l+1:b[l] := a[n, k]: od:od:seq(b[w], w=1..l); - Sascha Kurz

MATHEMATICA

t[0, 0] = 1; t[n_, k_] /; k > n = 0; t[n_, k_] := t[n, k] = Sum[t[n, j], {j, 0, k-1}] + Sum[t[n-j, k], {j, 1, n-k}]; Table[t[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-Fran├žois Alcover, Jan 08 2014 *)

PROG

(PARI) T(n, k)=if(k<0|k>n, 0, polcoeff(polcoeff(2*(1-x)/((1-4*x+3*x*y)+sqrt((1-x*y)*(1-9*x*y)+x^2*O(x^n))), n), k)) /* Michael Somos, Mar 06 2004 */

(PARI) T(n, k)=local(A, t); if(k<0|k>n, 0, A=matrix(n+1, n+1); A[1, 1]=1; for(m=1, n, t=0; for(j=0, m, t+=(A[m+1, j+1]=t+sum(i=1, m-j, A[m-i+1, j+1])))); A[n+1, k+1]) /* Michael Somos, Mar 06 2004 */

(PARI) T(n, k)=if(k<0|k>n, 0, (n==0)+sum(j=0, k-1, T(n, j))+sum(j=1, n-k, T(n-j, k))) /* Michael Somos, Mar 06 2004 */

CROSSREFS

Columns include A000079, A001792 (I guess), A086866, A059231. Rows sums give A086871.

A059231(n)=T(n, n).

Sequence in context: A244154 A182395 A244983 * A060000 A074050 A075301

Adjacent sequences:  A059447 A059448 A059449 * A059451 A059452 A059453

KEYWORD

nonn,tabl,easy

AUTHOR

N. J. A. Sloane, Sep 16 2003

EXTENSIONS

More terms from Ray Chandler, Sep 17 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified October 31 05:13 EDT 2014. Contains 248845 sequences.