login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A059372
Revert transform of factorials n! (n >= 1).
3
1, -2, 2, -4, -4, -48, -336, -2928, -28144, -298528, -3454432, -43286528, -583835648, -8433987584, -129941213184, -2127349165824, -36889047574272, -675548628690432, -13030733384956416, -264111424634864640
OFFSET
1,2
COMMENTS
First diagonal of triangle in A059370.
REFERENCES
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 171, #34.
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 1..400 (first 100 terms from T. D. Noe)
M. H. Albert, M. D. Atkinson and M. Klazar, The Enumeration of Simple Permutations, J. Integer Seqs., Vol. 6, 2003.
Eli Bagno, Estrella Eisenberg, Shulamit Reches, and Moriah Sigron, Blockwise simple permutations, arXiv:2303.13115 [math.CO], 2023.
Emeric Deutsch and B. E. Sagan, Congruences for Catalan and Motzkin numbers and related sequences, arXiv:math/0407326 [math.CO], 2004; J. Num. Theory 117 (2006), 191-215.
FORMULA
a(n) ~ -exp(-2) * n! * (1 - 4/n + 2/n^2 - 34/(3*n^3) - 296/(3*n^4) - 4818/(5*n^5) - 508532/(45*n^6)). - Vaclav Kotesovec, Aug 04 2015
G.f. A(x) satisfies: A(x) = x - Sum_{k>=2} k! * A(x)^k. - Ilya Gutkovskiy, Apr 22 2020
MAPLE
# From Transforms, see the footer of the page.
REVERT([seq(k!, k=1..20)]); # Peter Luschny, May 01 2021
# Using function CompInv from A357588.
CompInv(10, n -> factorial(n)); # Peter Luschny, Oct 09 2022
MATHEMATICA
nmax = 20; t[n_, k_] := t[n, k] = Sum[(m + 1)!*t[n - m - 1, k - 1], {m, 0, n - k}]; t[n_, 1] = n!; t[n_, n_] = 1; tnk = Table[t[n, k], {n, 1, nmax}, {k, 1, nmax}]; Inverse[tnk][[All, 1]] (* Jean-François Alcover, Jul 13 2016 *)
CROSSREFS
Sequence in context: A025557 A285909 A322253 * A161422 A049261 A135018
KEYWORD
sign,easy
AUTHOR
N. J. A. Sloane, Jan 28 2001
EXTENSIONS
More terms from Vladeta Jovovic, Mar 05 2001
Definition refined by Georg Fischer, May 01 2021
STATUS
approved