The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A059373 Second diagonal of triangle in A059370. 1
 1, -4, 8, -16, 12, -96, -480, -4672, -45520, -493120, -5798912, -73668608, -1005335552, -14671085568, -228051746304, -3762955404288, -65707303602432, -1210821292674048, -23487031074109440, -478463919131627520, -10214440549929047040, -228069193578011566080 (list; graph; refs; listen; history; text; internal format)
 OFFSET 2,2 REFERENCES L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 171, #34. LINKS FORMULA G.f. A(x) is (R(x))^2 where R(x) is the series reversion of x*hypergeom([1,2],[],x) = sum(n>=1, n!*x^n), see Comtet. - Mark van Hoeij, Apr 20 2013 MAPLE series(RootOf(T*hypergeom([1, 2], [], T)-x, T)^2, x=0, 21); # Mark van Hoeij, Apr 20 2013 MATHEMATICA nmax = 23; t[n_, k_] := t[n, k] = Sum[(m+1)!*t[n-m-1, k-1], {m, 0, n-k}]; t[n_, 1] = n!; t[n_, n_] = 1; tnk = Table[t[n, k], {n, 1, nmax}, {k, 1, nmax}]; A059370 = Reverse /@ Inverse[tnk] // DeleteCases[#, 0, 2] & ; Table[A059370[[n, n - 1]], {n, 2, nmax}] (* Jean-François Alcover, Jun 14 2013 *) PROG (PARI) N = 66;  x = 'x + O('x^N); tf = sum(n=1, N, n!*x^n ); gf=serreverse(%)^2; v = Vec(gf) /* Joerg Arndt, Apr 20 2013 */ CROSSREFS Cf. A059370. Sequence in context: A011970 A111988 A110652 * A137798 A312754 A312755 Adjacent sequences:  A059370 A059371 A059372 * A059374 A059375 A059376 KEYWORD sign,easy AUTHOR N. J. A. Sloane, Jan 28 2001 EXTENSIONS Added more terms, Mark van Hoeij and Joerg Arndt, Apr 20 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 21 20:39 EST 2020. Contains 332111 sequences. (Running on oeis4.)