login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A059345
Central column of Pascal's "rhombus" (actually a triangle) A059317.
6
1, 1, 4, 9, 29, 82, 255, 773, 2410, 7499, 23575, 74298, 235325, 747407, 2381126, 7603433, 24332595, 78013192, 250540055, 805803691, 2595158718, 8368026845, 27012184877, 87283372610, 282294378071, 913775677281, 2960160734818
OFFSET
0,3
COMMENTS
Number of paths in the right half-plane from (0,0) to (n,0) consisting of steps U=(1,1), D=(1,-1), h=(1,0) and H=(2,0). Example: a(3)=9 because we have hhh, hH, Hh, hUD, hDU, UhD, DhU, UDh and DUh. The number of such paths restricted to the first quadrant is given in A128720. - Emeric Deutsch, Sep 03 2007
Number of lattice paths from (0,0) to (n,n) using steps (1,0), (1,1), (1,2), (2,2). - Joerg Arndt, Jun 30 2011
Other two columns of the triangle in A059317 are given in A106053 and A106050. - Emeric Deutsch, Sep 03 2007
REFERENCES
Lin Yang and S.-L. Yang, The parametric Pascal rhombus. Fib. Q., 57:4 (2019), 337-346.
LINKS
Paul Barry, On Motzkin-Schröder Paths, Riordan Arrays, and Somos-4 Sequences, J. Int. Seq. (2023) Vol. 26, Art. 23.4.7.
J. Goldwasser et al., The density of ones in Pascal's rhombus, Discrete Math., 204 (1999), 231-236.
Paul K. Stockmeyer, The Pascal Rhombus and the Stealth Configuration, arXiv:1504.04404 [math.CO], 2015.
FORMULA
G.f.: 1/sqrt((1+z-z^2)*(1-3*z-z^2)). - Emeric Deutsch, Sep 03 2007
D-finite with recurrence: (n+1)*a(n+1)=(2*n+1)*a(n)+5*n*a(n-1)-(2*n-1)*a(n-2)-(n-1)*a(n-3). - Emeric Deutsch, Sep 03 2007
a(n) = sum{k=0..floor(n/2), C(n-k,k)*A002426(n-2k)}. - Paul Barry, Nov 29 2008
G.f.: A(x) = Sum_{n>=0} (2*n)!/(n!)^2 * x^(2n)/(1-x-x^2)^(2n+1). - Paul D. Hanna, Oct 29 2010
a(n) ~ sqrt((3+11/sqrt(13))/8) * ((3+sqrt(13))/2)^n/sqrt(Pi*n). - Vaclav Kotesovec, Aug 11 2013
MAPLE
r:=proc(i, j) if i=0 then 0 elif i=1 and abs(j)>0 then 0 elif i=1 and j=0 then 1 elif i>=1 then r(i-1, j)+r(i-1, j-1)+r(i-1, j+1)+r(i-2, j) else 0 fi end: seq(r(i, 0), i=1..12); # very slow; Emeric Deutsch, Jun 06 2004
G:=1/sqrt((1+z-z^2)*(1-3*z-z^2)): Gser:=series(G, z=0, 30): seq(coeff(Gser, z, n), n=0..27); # Emeric Deutsch, Sep 03 2007
a[0]:=1: a[1]:=1: a[2]:=4: a[3]:=9: for n from 3 to 26 do a[n+1]:=((2*n+1)*a[n]+5*n*a[n-1]-(2*n-1)*a[n-2]-(n-1)*a[n-3])/(n+1) end do: seq(a[n], n=0..27); # Emeric Deutsch, Sep 03 2007
MATHEMATICA
CoefficientList[Series[1/Sqrt[(1+x-x^2)(1-3x-x^2)], {x, 0, 40}], x] (* Harvey P. Dale, Jun 04 2011 *)
a[n_] := Sum[Binomial[n-k, k]*Hypergeometric2F1[(2*k-n)/2, (2*k-n+1)/2, 1, 4], {k, 0, Floor[n/2]}]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Nov 26 2015 *)
PROG
(PARI) {a(n)=polcoeff(sum(m=0, n, x^(2*m)/(1-x-x^2+x*O(x^n))^(2*m+1)*(2*m)!/(m!)^2), n)} \\ Paul D. Hanna, Oct 29 2010
(PARI) /* same as in A092566 but use */
steps=[[1, 0], [1, 1], [1, 2], [2, 2]];
/* Joerg Arndt, Jun 30 2011 */
CROSSREFS
Cf. A181545. - Paul D. Hanna, Oct 29 2010
Sequence in context: A352878 A276984 A210969 * A127768 A231255 A241393
KEYWORD
nonn,easy,nice
AUTHOR
N. J. A. Sloane, Jan 27 2001
EXTENSIONS
More terms from Larry Reeves (larryr(AT)acm.org), Jan 30 2001
STATUS
approved