The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A057949 Numbers with more than one factorization into S-primes. See A054520 and A057948 for definition. 6
 441, 693, 1089, 1197, 1449, 1617, 1881, 1953, 2205, 2277, 2541, 2709, 2793, 2961, 3069, 3249, 3381, 3465, 3717, 3933, 3969, 4221, 4257, 4389, 4473, 4557, 4653, 4761, 4977, 5229, 5301, 5313, 5445, 5733, 5841, 5929, 5985, 6237, 6321, 6417, 6489, 6633 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Numbers with k >= 4 prime factors (with multiplicity) that are congruent to 3 mod 4, no k-1 of which are equal. - Charlie Neder, Nov 03 2018 LINKS Eric M. Schmidt, Table of n, a(n) for n = 1..10000 EXAMPLE 2205 is in S = {1,5,9, ... 4i+1, ...}, 2205 = 5*9*49 = 5*21^2; 5, 9, 21 and 49 are S-primes (A057948). PROG (Sage) def A057949_list(bound) :     numterms = (bound-1)//4 + 1     M =  * numterms     for k in range(1, numterms) :         if M[k] == 1 :             kpower = k             while kpower < numterms :                 step = 4*kpower+1                 for j in range(kpower, numterms, step) :                     M[j] *= 4*k+1                 kpower = 4*kpower*k + kpower + k     # Now M[k] contains the product of the terms p^e where p is an S-prime     # and e is maximal such that p^e divides 4*k+1     return [4*k+1 for k in range(numterms) if M[k] > 4*k+1] # Eric M. Schmidt, Dec 11 2016 (PARI) ok(n)={if(n%4==1, my(f=factor(n)); my(s=[f[i, 2] | i<-[1..#f~], f[i, 1]%4==3]); vecsum(s)>=4 && vecmax(s)

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 26 08:39 EDT 2020. Contains 334620 sequences. (Running on oeis4.)