login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A057681 a(n) = Sum((-1)^j*binomial(n,3*j),j=0..floor(n/3)). 9
1, 1, 1, 0, -3, -9, -18, -27, -27, 0, 81, 243, 486, 729, 729, 0, -2187, -6561, -13122, -19683, -19683, 0, 59049, 177147, 354294, 531441, 531441, 0, -1594323, -4782969, -9565938, -14348907, -14348907, 0, 43046721, 129140163, 258280326, 387420489, 387420489 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

Let M be any endomorphism on any vector space, such that M^3 = 1 (identity). Then (1-M)^n = a(n)-A057682(n)*M+z(n)*M^2, where z(0)=z(1)=0 and, apparently, z(n+2)=A057083(n). - Stanislav Sykora, Jun 10 2012

Pisano period lengths: 1, 3, 1, 6, 24, 3, 6, 12, 1, 24, 60, 6, 12, 6, 24, 24, 96, 3, 18, 24, ... . - R. J. Mathar, Aug 10 2012

{A057681, A057682, A*}, where A* is A057083 prefixed by two 0's, is the difference analog of the trigonometric functions of order 3, {k_1(x), k_2(x), k_3(x)}. For a definition see [Erdelyi] and the Shevelev link. - Vladimir Shevelev, Jun 25 2017

REFERENCES

A. Erdelyi, Higher Transcendental Functions, McGraw-Hill, 1955, Vol. 3, Chapter XVIII.

LINKS

Table of n, a(n) for n=0..38.

T. Alden Gassert, Discriminants of simplest 3^n-tic extensions, arXiv preprint arXiv:1409.7829 [math.NT], 2014.

Mark W. Coffey, Reductions of particular hypergeometric functions 3F2 (a, a+1/3, a+2/3; p/3, q/3; +-1), arXiv preprint arXiv:1506.09160 [math.CA], 2015.

John B. Dobson, A matrix variation on Ramus's identity for lacunary sums of binomial coefficients, arXiv preprint arXiv:1610.09361, 2016

Ira Gessel, The Smith College diploma problem.

Vladimir Shevelev, Combinatorial identities generated by difference analogs of hyperbolic and trigonometric functions of order n, arXiv:1706.01454 [math.CO], 2017.

Index entries for linear recurrences with constant coefficients, signature (3,-3).

FORMULA

G.f.: (1-x)^2/((1-x)^3+x^3); a(n)=0^n/3+2*3^((n-2)/2)*cos(Pi*n/6). - Paul Barry, Feb 26 2004

Binomial transform of (1, 0, 0, -1, 0, 0, 1, 0, 0, -1, 0, ...). E.g.f.: 2*exp(3x/2)*cos(sqrt(3)*x/2)/3+1/3; a(n)=(((3+sqrt(-3))/2)^n+((3-sqrt(-3))/2)^n)/3+0^n/3. - Paul Barry, Feb 27 2004

a(n) = 6*a(n-1)-15*a(n-2)+20*a(n-3)-15*a(n-4)+6*a(n-5). - Paul Curtz, Jan 02 2008

Start with x(0)=1,y(0)=0,z(0)=0 and set x(n+1)=x(n)-z(n), y(n+1)=y(n)-x(n),z(n+1)=z(n)-y(n). Then a(n)=x(n). But this recurrence falls into a repetitive cycle of length 6 and multiplicative factor -27, so that a(n) = -27*a(n-6) for any n>6. - Stanislav Sykora, Jun 10 2012

E.g.f.: (1+2*exp(3*z/2)*cos(z*sqrt(3/4)))/3. - Peter Luschny, Jul 10 2012

a(0)=a(1)=a(2)=1, a(n)=3*a(n-1)-3*a(n-2), n>=3. - Wesley Ivan Hurt, Nov 11 2014

For n>=1, a(n) = 2*3^((n-2)/2)*cos(Pi*n/6). - Vladimir Shevelev, Jun 25 2017

a(n+m) = a(n)*a(m)-A057682(n)*A*057083(m)-A*057083(n)*A057682(m), where A*057083 is A057083 prefixed by two 0's. - Vladimir Shevelev, Jun 25 2017

EXAMPLE

If M^3=1 then (1-M)^6 = a(6)-A057682(6)*M+A057083(4)*M^2 = -18+9*M+9*M^2.

MAPLE

A057681 := n->add((-1)^j*binomial(n, 3*j), j=0..floor(n/3)); seq(A057681(n), n=0..50);

A057681_list := proc(n) local i; series((1+2*exp(3*z/2)*cos(z*sqrt(3/4)))/3, z, n+2): seq(i!*coeff(%, z, i), i=0..n) end: A057681_list(38); # Peter Luschny, Jul 10 2012

MATHEMATICA

Join[{1}, LinearRecurrence[{3, -3}, {1, 1}, 40]] (* Harvey P. Dale, Aug 19 2014 *)

CROSSREFS

Cf. A009116, A009545, A057682, A057083, A103312.

Sequence in context: A030784 A203594 A123877 * A103312 A159794 A100967

Adjacent sequences:  A057678 A057679 A057680 * A057682 A057683 A057684

KEYWORD

sign,easy

AUTHOR

N. J. A. Sloane, Oct 20 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 18 07:00 EDT 2018. Contains 316307 sequences. (Running on oeis4.)