login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A057681 a(n) = Sum((-1)^j*binomial(n,3*j),j=0..floor(n/3)). 9
1, 1, 1, 0, -3, -9, -18, -27, -27, 0, 81, 243, 486, 729, 729, 0, -2187, -6561, -13122, -19683, -19683, 0, 59049, 177147, 354294, 531441, 531441, 0, -1594323, -4782969, -9565938, -14348907, -14348907, 0, 43046721, 129140163, 258280326, 387420489, 387420489 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

Let M be any endomorphism on any vector space, such that M^3 = 1 (identity). Then (1-M)^n = a(n)-A057682(n)*M+z(n)*M^2, where z(0)=z(1)=0 and, apparently, z(n+2)=A057083(n). - Stanislav Sykora, Jun 10 2012

Pisano period lengths: 1, 3, 1, 6, 24, 3, 6, 12, 1, 24, 60, 6, 12, 6, 24, 24, 96, 3, 18, 24, ... . - R. J. Mathar, Aug 10 2012

{A057681, A057682, A*}, where A* is A057083 prefixed by two 0's, is the difference analog of the trigonometric functions of order 3, {k_1(x), k_2(x), k_3(x)}. For a definition see [Erdelyi] and the Shevelev link. - Vladimir Shevelev, Jun 25 2017

REFERENCES

John B. Dobson, A matrix variation on Ramus's identity for lacunary sums of binomial coefficients, arXiv preprint arXiv:1610.09361, 2016

A. Erdelyi, Higher Transcendental Functions, McGraw-Hill, 1955, Vol. 3, Chapter XVIII.

LINKS

Table of n, a(n) for n=0..38.

T. Alden Gassert, Discriminants of simplest 3^n-tic extensions, arXiv preprint arXiv:1409.7829 [math.NT], 2014.

Mark W. Coffey, Reductions of particular hypergeometric functions 3F2 (a, a+1/3, a+2/3; p/3, q/3; +-1), arXiv preprint arXiv:1506.09160 [math.CA], 2015.

Ira Gessel, The Smith College diploma problem.

Vladimir Shevelev, Combinatorial identities generated by difference analogs of hyperbolic and trigonometric functions of order n, arXiv:1706.01454 [math.CO], 2017.

Index entries for linear recurrences with constant coefficients, signature (3,-3).

FORMULA

G.f.: (1-x)^2/((1-x)^3+x^3); a(n)=0^n/3+2*3^((n-2)/2)*cos(Pi*n/6). - Paul Barry, Feb 26 2004

Binomial transform of (1, 0, 0, -1, 0, 0, 1, 0, 0, -1, 0, ...). E.g.f.: 2*exp(3x/2)*cos(sqrt(3)*x/2)/3+1/3; a(n)=(((3+sqrt(-3))/2)^n+((3-sqrt(-3))/2)^n)/3+0^n/3. - Paul Barry, Feb 27 2004

a(n) = 6*a(n-1)-15*a(n-2)+20*a(n-3)-15*a(n-4)+6*a(n-5). - Paul Curtz, Jan 02 2008

Start with x(0)=1,y(0)=0,z(0)=0 and set x(n+1)=x(n)-z(n), y(n+1)=y(n)-x(n),z(n+1)=z(n)-y(n). Then a(n)=x(n). But this recurrence falls into a repetitive cycle of length 6 and multiplicative factor -27, so that a(n) = -27*a(n-6) for any n>6. - Stanislav Sykora, Jun 10 2012

E.g.f.: (1+2*exp(3*z/2)*cos(z*sqrt(3/4)))/3. - Peter Luschny, Jul 10 2012

a(0)=a(1)=a(2)=1, a(n)=3*a(n-1)-3*a(n-2), n>=3. - Wesley Ivan Hurt, Nov 11 2014

For n>=1, a(n) = 2*3^((n-2)/2)*cos(Pi*n/6). - Vladimir Shevelev, Jun 25 2017

a(n+m) = a(n)*a(m)-A057682(n)*A*057083(m)-A*057083(n)*A057682(m), where A*057083 is A057083 prefixed by two 0's. - Vladimir Shevelev, Jun 25 2017

EXAMPLE

If M^3=1 then (1-M)^6 = a(6)-A057682(6)*M+A057083(4)*M^2 = -18+9*M+9*M^2.

MAPLE

A057681 := n->add((-1)^j*binomial(n, 3*j), j=0..floor(n/3)); seq(A057681(n), n=0..50);

A057681_list := proc(n) local i; series((1+2*exp(3*z/2)*cos(z*sqrt(3/4)))/3, z, n+2): seq(i!*coeff(%, z, i), i=0..n) end: A057681_list(38); # Peter Luschny, Jul 10 2012

MATHEMATICA

Join[{1}, LinearRecurrence[{3, -3}, {1, 1}, 40]] (* Harvey P. Dale, Aug 19 2014 *)

CROSSREFS

Cf. A009116, A009545, A057682, A057083, A103312.

Sequence in context: A030784 A203594 A123877 * A103312 A159794 A100967

Adjacent sequences:  A057678 A057679 A057680 * A057682 A057683 A057684

KEYWORD

sign,easy

AUTHOR

N. J. A. Sloane, Oct 20 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 11 21:15 EST 2017. Contains 295919 sequences.