OFFSET
0,1
COMMENTS
For n > 10, a(n) == -1 (mod 2*3*5*11*13). - Farideh Firoozbakht, Apr 24 2004
From Glen Whitney, Sep 14 2022: (Start)
Extending Firoozbakht's observation, modulo any prime p, all residues of a(n) of the form 2^k - 1 mod p are forbidden for n greater than or equal to the number of such residues, e.g., a(n) may not be congruent to 1 or 3 mod 7 for n >= 2.
LINKS
EXAMPLE
a(5) = 89 because the numbers 89, 179, 359, 719, 1439, 2879 are all primes and 89 is the first number to have this property.
MATHEMATICA
f[n_] := 2n + 1; k = 1; Do[ While[ Union[ PrimeQ[ NestList[ f, Prime[k], n]]] != {True}, k++ ]; Print[ Prime[k]], {n, 1, 9} ]
PROG
(PARI) has(p, n)=for(k=1, n, if(!isprime(p), return(0)); p=2*p+1); isprime(p)
a(n)=forprime(p=2, , if(has(p, n), return(p))) \\ Charles R Greathouse IV, Apr 29 2015
CROSSREFS
KEYWORD
nonn,nice,more
AUTHOR
Patrick De Geest, Aug 15 2000
EXTENSIONS
More terms from Farideh Firoozbakht, Apr 24 2004
a(11) (from the Caldwell link) sent by Peter Deleu, Hulste, Belgium, Nov 22 2004
a(13) added from A005602, Paul Zimmermann, Mar 09 2018
STATUS
approved