The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A256223 Smallest Fibonacci number not occurring in the numerator of the 2^n sums generated from the set 1, 1/2, 1/3,..., 1/n. 4
 1, 2, 2, 2, 2, 2, 21, 21, 21, 21, 34, 34, 144, 144, 144, 144, 144, 144, 144, 144, 144, 144, 987, 987, 987, 987, 987, 987, 987, 987, 987, 987, 46368, 46368, 46368, 46368, 46368, 46368, 46368, 46368, 46368, 832040, 832040, 832040, 832040, 832040, 832040, 832040 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS The largest prime generated is given in A256222. LINKS Hiroaki Yamanouchi, Table of n, a(n) for n = 0..50 EXAMPLE a(3) = 2 because we obtain 5 following subsets {1}, {1/2}, {1/3}, {1, 1/2} and {1/2, 1/3} having 5 sums with Fibonacci numerators: 1, 1, 1, 1+1/2 = 3/2 and 1/2+1/3 = 5/6. Then, 2 is the smallest Fibonacci number not occurring in the numerator of the previous sums. MATHEMATICA <<"DiscreteMath`Combinatorica`"; maxN=23; For[prms={}; i=0; n=1, n<=maxN, n++, While[i<2^n-1, i++; s=NthSubset[i, Range[n]]; k=Numerator[Plus@@(1/s)]; If[IntegerQ[Sqrt[5*k^2+4]]||IntegerQ[Sqrt[5*k^2-4]], AppendTo[prms, k]]]; prms=Union[prms]; j=2; While[MemberQ[prms, Fibonacci[j]], j++ ]; Print[Fibonacci[j]]] CROSSREFS Cf. A000045, A075227, A256220, A256221, A256222. Sequence in context: A095386 A060359 A029665 * A056993 A057331 A270374 Adjacent sequences:  A256220 A256221 A256222 * A256224 A256225 A256226 KEYWORD nonn AUTHOR Michel Lagneau, Mar 19 2015 EXTENSIONS a(0) prepended and a(24)-a(47) added by Hiroaki Yamanouchi, Mar 30 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 7 16:09 EDT 2020. Contains 335496 sequences. (Running on oeis4.)