This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A056809 Numbers k such that k, k+1 and k+2 are products of two primes. 28
 33, 85, 93, 121, 141, 201, 213, 217, 301, 393, 445, 633, 697, 841, 921, 1041, 1137, 1261, 1345, 1401, 1641, 1761, 1837, 1893, 1941, 1981, 2101, 2181, 2217, 2305, 2361, 2433, 2461, 2517, 2641, 2721, 2733, 3097, 3385, 3601, 3693, 3865, 3901, 3957, 4285 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Each term is the beginning of a run of three 2-almost primes (semiprimes). No runs exist of length greater than three. For the same reason, each term must be odd: If n were even, then so would be n+2. In fact, one of n or n+2 would be divisible by 4, so must indeed be 4 to have only two prime factors. However, neither 2,3,4 nor 4,5,6 is such a run. - Rick L. Shepherd, May 27 2002 n+1, which is twice a prime, is in A086005. The primes are in A086006. - T. D. Noe, May 31 2006 LINKS D. W. Wilson, Table of n, a(n) for n = 1..10000 EXAMPLE 121 is in the sequence because 121 = 11^2, 122 = 2*61 and 123 = 3*41, each of which is the product of two primes. MAPLE P:=proc(n) local j, k, ok; ok:=1; for j from 1 to 3 do if not bigomega(n+j-1)=2 then ok:=0; break; fi; od; if ok=1 then n; fi; end: seq(P(i), i=6..4285); # Paolo P. Lava, Oct 31 2018 MATHEMATICA f[n_] := Plus @@ Transpose[ FactorInteger[n]] []; Select[Range[10^4], f[ # ] == f[ # + 1] == f[ # + 2] == 2 & ] f[n_]:=Last/@FactorInteger[n]=={1, 1}||Last/@FactorInteger[n]=={2}; Timing[lst={}; Do[If[f[n]&&f[n+1]&&f[n+2], AppendTo[lst, n]], {n, 2, 8!}]; lst] (* Vladimir Joseph Stephan Orlovsky, Feb 25 2010 *) Flatten[Position[Partition[PrimeOmega[Range], 3, 1], {2, 2, 2}]] (* Harvey P. Dale, Feb 15 2015 *) PROG (PARI) forstep(n=1, 5000, 2, if(bigomega(n)==2 && bigomega(n+1)==2 && bigomega(n+2)==2, print1(n, ", "))) (PARI) is(n)=n%4==1 && isprime((n+1)/2) && bigomega(n)==2 && bigomega(n+2)==2 \\ Charles R Greathouse IV, Sep 08 2015 (PARI) list(lim)=my(v=List(), t); forprime(p=2, (lim+1)\2, if(bigomega(t=2*p-1)==2 && bigomega(t+2)==2, listput(v, t))); Vec(v) \\ Charles R Greathouse IV, Sep 08 2015 CROSSREFS Intersection of A070552 and A092207. Cf. A045939, A039833, A086005, A086006. Sequence in context: A044171 A044552 A045939 * A073251 A005238 A052214 Adjacent sequences:  A056806 A056807 A056808 * A056810 A056811 A056812 KEYWORD nonn AUTHOR Sharon Sela (sharonsela(AT)hotmail.com), May 04 2002 EXTENSIONS Edited and extended by Robert G. Wilson v, May 04 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 21 18:26 EDT 2019. Contains 326168 sequences. (Running on oeis4.)