This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A056121 a(n) = n*(n+15)/2. 12
 0, 8, 17, 27, 38, 50, 63, 77, 92, 108, 125, 143, 162, 182, 203, 225, 248, 272, 297, 323, 350, 378, 407, 437, 468, 500, 533, 567, 602, 638, 675, 713, 752, 792, 833, 875, 918, 962, 1007, 1053, 1100, 1148, 1197, 1247, 1298, 1350, 1403, 1457, 1512, 1568, 1625 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Index entries for linear recurrences with constant coefficients, signature (3,-3,1). FORMULA G.f.: x*(8-7*x)/(1-x)^3. a(n) = A000096(n) + 6*n = A056119(n) + n = A056126(n) - n. - Zerinvary Lajos, Oct 01 2006 a(n-15) = C(n,2) - 7*n. - Zerinvary Lajos, Nov 26 2006 a(n) = A126890(n,7) for n>6. - Reinhard Zumkeller, Dec 30 2006 Let f(n,i,a) = sum_{k=0..n-i} binomial(n,k)*stirling1(n-k,i)*product_{j=0..k-1} (-a-j), then a(n) = -f(n,n-1,8), for n>=1. - Milan Janjic, Dec 20 2008 a(n) = n + a(n-1) + 7 (with a(0)=0). - Vincenzo Librandi, Aug 07 2010 sum_{n>=1} 1/a(n) = 1195757/2702700 via A132760. - R. J. Mathar, Jul 14 2012 a(n) = 8*n - floor(n/2) + floor(n^2/2). - Wesley Ivan Hurt, Jun 15 2013 MAPLE a:=n->n*(n+15)/2: seq(a(n), n=0..66); MATHEMATICA i=-7; s=0; lst={}; Do[s+=n+i; If[s>=0, AppendTo[lst, s]], {n, 0, 6!, 1}]; lst (* Vladimir Joseph Stephan Orlovsky, Oct 29 2008 *) PROG (PARI) a(n)=n*(n+15)/2 \\ Charles R Greathouse IV, Sep 24 2015 CROSSREFS Cf. A000096, A056119, A056126, A056000, A001477. Sequence in context: A044441 A189381 A190749 * A264355 A028884 A247117 Adjacent sequences:  A056118 A056119 A056120 * A056122 A056123 A056124 KEYWORD easy,nonn AUTHOR Barry E. Williams, Jul 06 2000 EXTENSIONS More terms from James A. Sellers, Jul 07 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.