login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A056000 a(n) = n*(n+9)/2. 30
0, 5, 11, 18, 26, 35, 45, 56, 68, 81, 95, 110, 126, 143, 161, 180, 200, 221, 243, 266, 290, 315, 341, 368, 396, 425, 455, 486, 518, 551, 585, 620, 656, 693, 731, 770, 810, 851, 893, 936, 980, 1025, 1071, 1118, 1166, 1215, 1265, 1316, 1368, 1421, 1475 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Numbers m >= 0 such that 8m+81 is a square. - Bruce J. Nicholson, Jul 29 2017

REFERENCES

A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, p. 193.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..5000

Leo Tavares, Illustration: Triangular Pairs

Index entries for linear recurrences with constant coefficients, signature (3,-3,1).

FORMULA

a(n) = A000217(n+4) - 10.

G.f.: x(5-4x)/(1-x)^3.

From Zerinvary Lajos, Oct 01 2006: (Start)

a(n) = A000096(n) + 3*n.

a(n) = A055999(n) + n.

a(n) = A056115(n) - n.

(End)

a(n) = binomial(n,2) - 4*n, n >= 9. - Zerinvary Lajos, Nov 25 2006

a(n) = A126890(n,4) for n > 3. - Reinhard Zumkeller, Dec 30 2006

a(n) = A028569(n)/2. - Zerinvary Lajos, Feb 12 2007

If we define f(n,i,a) = Sum_{k=0..(n-i)} binomial(n,k)*stirling1(n-k,i)*Product_{j=0..k-1} (-a-j), then a(n) = -f(n,n-1,5), for n >= 1. - Milan Janjic, Dec 20 2008

a(n) = n + a(n-1) + 4. - Vincenzo Librandi, Aug 07 2010

a(n) = Sum_{k=1..n} (k+4). - Gary Detlefs, Aug 10 2010

Sum_{n>=1} 1/a(n) = 7129/11340. - R. J. Mathar, Jul 14 2012

a(n) = 5n - floor(n/2) + floor(n^2/2). - Wesley Ivan Hurt, Jun 15 2013

E.g.f.: (1/2)*(x^2 + 10*x)*exp(x). - G. C. Greubel, Jul 17 2017

Sum_{n>=1} (-1)^(n+1)/a(n) = 4*log(2)/9 - 1879/11340. - Amiram Eldar, Jul 03 2020

a(n) = A000217(n+1) + A008585(n) - 1. - Leo Tavares, Sep 22 2022

MATHEMATICA

Table[n (n + 9)/2, {n, 0, 50}] (* or *)

FoldList[#1 + #2 + 4 &, Range[0, 50]] (* or *)

Table[PolygonalNumber[n + 4] - 10, {n, 0, 50}] (* or *)

CoefficientList[Series[x (5 - 4 x)/(1 - x)^3, {x, 0, 50}], x] (* Michael De Vlieger, Jul 30 2017 *)

PROG

(PARI) a(n)=n*(n+9)/2 \\ Charles R Greathouse IV, Sep 24 2015

CROSSREFS

Cf. A000096, A055998, A055999, A001477.

Column m=2 of (1, 5)-Pascal triangle A096940.

Cf. numbers of the form n*(d*n+10-d)/2 indexed in A140090.

Cf. A000217, A008585.

Sequence in context: A145005 A004083 A190365 * A080566 A094684 A240438

Adjacent sequences: A055997 A055998 A055999 * A056001 A056002 A056003

KEYWORD

easy,nonn

AUTHOR

Barry E. Williams, Jun 16 2000

EXTENSIONS

More terms from James A. Sellers, Jul 04 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 5 19:04 EST 2022. Contains 358588 sequences. (Running on oeis4.)