

A055883


Exponential transform of Pascal's triangle A007318.


1



1, 1, 1, 2, 4, 2, 5, 15, 15, 5, 15, 60, 90, 60, 15, 52, 260, 520, 520, 260, 52, 203, 1218, 3045, 4060, 3045, 1218, 203, 877, 6139, 18417, 30695, 30695, 18417, 6139, 877, 4140, 33120, 115920, 231840, 289800, 231840, 115920, 33120, 4140, 21147
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,4


COMMENTS

Triangle T(n,k), 0<=k<=n, read by rows, given by [1, 1, 1, 2, 1, 3, 1, 4, 1, 5, 1, 6, ...] DELTA [1, 1, 1, 2, 1, 3, 1, 4, 1, 5, 1, 6, ...] where DELTA is the operator defined in A084938 .  Philippe DelĂ©ham (kolotoko(aT)lagoon.nc), Aug 10 2005


LINKS

Table of n, a(n) for n=0..45.
N. J. A. Sloane, Transforms
Index entries for triangles and arrays related to Pascal's triangle


FORMULA

a(n, k)=Bell(n)*C(n, k). E.g.f.: A(x, y)=exp(exp(x+xy)1).


EXAMPLE

1; 1,1; 2,4,2; 5,15,15,5; 15,60,90,60,15; ...


CROSSREFS

Cf. A000110, A007318. Row sums give A055882.
Sequence in context: A268740 A120493 A085880 * A085843 A198715 A216663
Adjacent sequences: A055880 A055881 A055882 * A055884 A055885 A055886


KEYWORD

nonn,tabl


AUTHOR

Christian G. Bower, Jun 09 2000


STATUS

approved



